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Abstract

This work introduces a new Parallel Island Model (PIM) that encom-
passes the benefits of heterogeneity and algorithmic reconfigurability. The
former feature, heterogeneity, allows the execution of different evolution-
ary algorithms on the islands, increasing the usual diversity obtained by
the communication topologies and migration policies by homogeneous PIMs
(HoPIMs). Previous heterogeneous PIMs (HePIMs) were able to provide
competitive solutions regarding the HoPIMs. The latter feature, the capa-
bility of reconfiguration, empowers PIMs to change dynamically from the exe-
cution of one evolutionary algorithm to another. In this manner, the required
diversity and flexibility to outperform HoPIMs and HePIMs is achieved. This
paper discusses policies to profit from the feature of reconfigurability on
HePIM models and provides an innovative and successful stagnation-based
reconfiguration policy. The benefits of the new reconfigurable model are
verified using the unsigned reversal distance optimization problem as a case
study.
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1. Introduction

Many complex optimization problems in engineering, biology, and social
sciences cannot be solved by exact optimization methods such as function
extreme methods or mathematical programming. In such contexts, approxi-
mation algorithms and heuristics that provide near-optimal solutions in rea-
sonable time and allow parallelism are of great interest. Among such tech-
niques, we are interested in parallelizing bio-inspired algorithms (BAs) to
solve NP-hard problems. BAs have adaptive search capabilities mimicking
the evolutionary process of biological systems and can compute good-quality
and satisfactory solutions for practical applications. However, optimization
through such BA approaches demands exhaustive computations and efficient
use of resources. Parallelization is one of the natural mechanisms applied
to speed up and improve the accuracy of solutions obtained by BAs. In
this context, parallel island models (PIMs) are an efficient and easily adapt-
able approach to dealing with NP-hard problems. A PIM subdivides the
population among their islands (processors) and simultaneously runs a BA
on each island. The exchange of individuals promotes migration between
islands, improving the global population. The result is the most adapted
individual among all the islands, regarding a fitness function defined from
the characteristics of the problem.

1.1. Homogeneous and Heterogeneous Parallel Island Models

PIMs in which all islands run the same BA are called homogeneous PIMs
(HoPIMs). We proposed different HoPIM-based approaches to solve differ-
ent complex combinatorial problems, obtaining highly competitive results
regarding performance and accuracy [1, 2, 3, 4].

Heterogeneous PIMs (HePIMs) are PIMs in which each island may exe-
cute a different BA [5]. Since this feature promotes higher diversity (than
the one obtained by HoPIMs), such models encourage the exploration of mi-
gration policies and island topologies that outperform the solutions obtained
by homogeneous models. Indeed, we have explored HePIMs that provide
competitive solutions to different NP-hard problems regarding those com-
puted by HoPIMs. Despite this fact, no HePIM was able to outperform all
homogeneous models [6].

1.2. Contribution

To improve the diversity and flexibility of HePIMs, to outperform the
accuracy of results computed by the best-adapted HoPIMs (regarding [4, 6]),
the feature of reconfigurability was first added to HePIMs in [7], obtaining
encouraging and competitive results. In such models, each island may run a
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different BA and update it to the BA being executed by the island with the
best performance, and the reconfiguration process was periodically performed
after a fixed number of generations during the whole evolutionary process.
However, the periodic reconfiguration policy proposed in [7] does not provide
the required diversity to outperform the best-adapted HoPIMs.

This paper introduces reconfigurable HePIMs with a so-called stagnation-
based reconfiguration policy providing the required diversity. The algorith-
mic reconfiguration is applied continuously if island stagnation is detected.
Such improvement in the dynamicity and flexibility of the reconfiguration
phase is possible by maintaining a record of the algorithm executed by the
most evolved island in a previous period of generations of the evolutionary
process. The early reconfigurable PIMs proposed in [7] were refined after
exhaustive experiments. Maintaining such a record eliminates the need to
exchange information between the islands to decide how each island should
reconfigure its BA.

The problem addressed in this paper is the unsigned reversal distance
problem (URD), an NP-hard problem highly applied in comparative ge-
nomics. For comparison matters, we select the best-adapted HoPIMs to URD
from [4] and the HePIMs that performed better from [6]. The HePIMs run
three different BAs: simple genetic algorithm GA [8], double-point crossover
genetic algorithm GAD [9], and DE [10], and the best-adapted HoPIMs run DE

in all its islands. Experiments are performed using two different topologies,
a static three topology and a dynamic complete graph topology.

The design decisions used by the stagnation-based reconfigurable HeP-
IMs, introduced in this paper, show that empowering HePIMs with the
reconfiguration feature opens an exciting space for investigation since the
accuracy of the computed solutions outperforms the results obtained by all
previous PIMs.

In addition, this paper analyzes the algorithm convergence of the stagnation-
based reconfigurable PIMs implementing mechanisms to track island recon-
figuration. They identify in which phase of the evolutionary process the
model becomes homogeneous. Curiously, not in all cases, the convergence is
towards the best-adapted HoPIM reported in [4, 6].

1.3. Organization

Sec. 2 presents the unsigned reversal distance problem, the three selected
BAs, and PIMs. Sec. 3 presents related work, and Sec. 4.1 introduces the
new reconfigurable HePIMs and explaining how the reconfiguration works.
Then, Sec. 5 presents experiments, discusses accuracy results, performance,
and statistical analysis. Finally, Sec. 6 concludes and discussed future work.
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To assure reproducibility, source and data used in the experiments are avail-
able at http://genoma.cic.unb.br.

2. Background

2.1. Case study

The evolutionary distance between two organisms can be computed as
the number of rearrangements needed to transform a genome into another
using some evolutionary measure. This work considers the minimum number
of reversals to compute the distance between unichromosomal organisms.

Permutations on {1, · · · , n} represent a genome containing n genes. Given
a genome π = (π1, π2, ..., πn), where 1 ≤ i, πi ≤ n, a reversal ρj,k, for
1 ≤ j ≤ k ≤ n, transforms π into π′ = (· · · , πj−1, πk, · · · , πj, πk+1, · · · ),
that is, it inverts the elements between πj and πk. Genes may have forward
or reverse orientation on a genome; if known, genes receive a positive or
negative sign, respectively, and the genome is a signed permutation.

There are two evolutionary problems related to computing the distance by
reversals. The signed reversal distance (SRD) problem asks for the minimum
number of reversals needed to transform a signed permutation into another.
Moreover, the unsigned reversal distance (URD) problem, addressed in this
paper, consists of computing such a number between unsigned permutations
in which the orientation of genes is unknown.

It is well-known that SRD belongs to class P [11], whereas URD is an
NP-hard problem [12]. Approximated solutions to solve an URD instance
can be obtained by computing exact solutions to SDR instances resulting
from attributing signs to the genes in the original URD instance [13, 14]. The
fitness used by our models is linearly computed over signed permutations by
applying Bader’s exact algorithm to solve SRD [15].

2.2. Local Evolutionary Engines — bio-inspired Algorithms

The reconfigurable models, introduced in this paper, use three BAs,
widely applied to solve optimization problems. These BAs present distinct
adaptability characteristics.

• Simple Genetic Algorithm (GA). GA was introduced by J. H. Holland [8].
This algorithm evolves a population by considering a breeding cycle where
the best individuals are selected and produce offspring by applying one-
point crossover (Fig. 1 (a)). Then, the descendants replace the worst
individuals in the current population. The breeding cycle relies on four
parameters; namely, the percentages of selection and replacement, and the
probability of application of mutation and crossover.

4

http://genoma.cic.unb.br


• Double-point Crossover Genetic Algorithm (GAD). This algorithm has a
similar behavior than GA except by the technique to promote crossover,
illustrated in Fig. 1 (b), and how the population evolves: in contrast to
GA, GAD offspring replace individuals randomly selected.

• Differential Evolution (DE). DE was roposed by Storn and Price [10]. It
is a method to optimize functions over the real multidimensional space
Rn. We adapt the algorithm by restricting the domain of the function
as the set of permutations. The evolutionary process is guided by the
mutation factor FM , applied to individuals randomly selected (from the
population) to generate mutants, and the probability of crossover PC . The
local population evolves by replacing individuals having the worst fitness
with mutants.

To adapt DE to URD, each n-dimensional individual v is represented by a
numerical vector with values in the range [0, 1], which is associated with the
permutation π = (π1, . . . , πn) given as input. If the i−th entry of v belongs
to the interval [0, 0.5) then πi receives a negative orientation; otherwise, if it
belongs to the interval [0.5, 1], πi is assigned positively. In the end, a signed
permutation is built from v and π.

For GA and GAD, the orientation of the genes in each individual is ran-
domly generated as ±1. After the transformation of an unsigned to a signed
permutations, the linear exact algorithm to solve the SRD problem, proposed
by Bader et al. [15], computes the fitness of each individual.

Although GA and GAD are variants of the genetic algorithm, it is well-
known that they have distinct combinatorial behaviours [9].

(a) One-point crossover

1 2 3 4 5 6 7 8

5 8 6 4 3 1 2 7
⇝

1 2 3 4 3 1 2 7

5 8 6 4 5 6 7 8

(b) Double-point crossover

1 2 3 4 5 6 7 8

5 8 6 4 3 1 2 7
⇝

1 2 3 4 3 6 7 8

5 8 6 4 5 1 2 7

Figure 1: One-point and double-point crossing operators.

2.3. Parallel island model (PIM)

PIMs have been widely used to improve the performance of Evolutionary
Algorithms [16]. In PIMs, the population is distributed into islands, running
their BAs in parallel. The connection between the islands establishes the
model’s topology. PIM’s topologies can be classified as static or dynamic.
Static PIMs maintain the connections fixed during the execution, whereas
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dynamic models admit changes during the process. Analysis of NP-hard
problems from PIMs based on different topologies is available (e.g. [17, 4,
18]).

Homogeneous PIMs execute the same BA in all islands, whereas hetero-
geneous models admit different BAs running in their islands.

Connected islands exchange individuals to evolve, and a migration policy
guides individuals exchange between islands during the evolutionary process.
PIMs have tuned breeding cycles and migration parameters to improve the
solutions’ quality. The following briefly presents the migration parameters
used in the PIMs considered in this work. Some of them take into account
the classification of individuals as best, worst, and random, based on a
rank established according to their fitness, in increasing order. The first half
of the rank corresponds to the best, whereas the second half to the worst
individuals; random individuals are selected randomly.

• Individuals number (IN): number of individuals emigrating from each is-
land.

• Emigrant Individuals (EMI): classify the individuals selected for emigra-
tion as: 1. best, 2. worst, or 3. random.

• Immigrant Individuals (IMI): determines the type of individuals in the
target island replaced by immigrants among: 1. worst, 2. random,
and 3. similar. Similar individuals have the same classification as their
replacement immigrants according to their fitness rank.

• Emigration Policy (EP): defines whether individuals are cloned or re-
moved in the local island when they emigrate to the target island.

• Migration Interval (MI): is the percentage of iterations (generations) of
the evolutionary process after which the migration process is redone. Each
island separately evolves its population by MI×maxIt generations, where
maxIt is the total number of iterations performed by each BA.

PIMs are also classified according to the synchroneity in which islands
evolve their population. In Synchronous PIMs, islands evolve performing
each generation simultaneously, whereas, in asynchronous PIMs, islands’ evo-
lution occurs independently, even during migration. The latest mimics the
behavior found in nature.

3. Related Work

The discussion in this section is restricted to previous work that boosted
the evolution of parallel island models.
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Duarte et al. [19] proposed a migration policy for PIMs called DIM-1 with
target islands defined by attractiveness. The migrations are synchronous
to occur point to point, where links between islands are unidirectional and
weighted dynamically according to the local’s attractiveness to the target
island. The weights represent the probability of each communication being
used for migration. Afterward, they presented a new evaluation strategy
in [20] called DIM-2 that changes how to define the island’s attractiveness
so that islands become more or less attractive according to their solutions’
quality. The authors in [21] proposed HePIMs based on strategies DIM-1
and DIM-2 using as an evolutionary engine only variations of DE, which had
a successful history in competitions held by the CEC. The results presented
demonstrated that the HePIMs from the DIM-1 and DIM-2 can produce bet-
ter results than the HoPIM versions. Duarte et al. also propose tweaks to
the migration policy in [17] by adjusting how the attractiveness and weights
of island connections are calculated. The adjustments were inspired by the
natural phenomenon known as stigmergy [22]. The dynamic HePIMs, pre-
sented in the current work add to the heterogeneity and the dynamism of
the migration policy, the algorithmic flexibility obtained by dynamic recon-
figuration.

Qinxue et al. [23] implemented dynamism in PIM using GA through
spectral clustering. The authors do not have a fixed number of islands but
limit the number to ten islands. The model is initialized with an island
and starts to evolve. During the evolutionary process, whenever there is a
migration “epoch” (migration phase), individuals are grouped by similarity
using spectral clustering, giving rise to new islands. Similar individuals are
assigned to the same island. The standard model is compared with tradi-
tional models showing its satisfactory performance. Among the benefits, the
authors highlight a reduction of the workload, in contrast to other methods
in a parallel environment that usually implement each island allocated to
a processor and exchange individuals in the migration phases via messages.
Once again, the migration policy of this approach is dynamic as ours but
does not add the power of algorithmic reconfiguration. Moreover, our mod-
els maintain a regularity regarding the population size on each island and the
distribution of the processors over the islands aiming to explore parallelism
as efficiently as possible.

Hashimoto et al. [24] proposed a HePIM to solve multi-task problems,
where each island evaluates an objective. Migrants are selected at high mi-
gration frequency and removed randomly on each local island, replacing the
worst individuals in the target islands. Since emigrants went to islands re-
sponsible for different objectives, their fitness values are the worst, assuming
they have fewer chances of being suitable for the target island objective. The

7



current work applies migration policies shared by Hashimoto et al. focusing
on consolidating reconfigurability as a new influential parameter to be con-
sidered in the design of HePIMs. Despite this restriction, it is clear that the
proposed model’s heterogeneity is relevant to multi-objective optimization
since different BAs adapt better to various optimization tasks.

Lardeux et al. [25] study dynamic island models with a focus on migra-
tion policies at the level of individuals. To control migrations, the authors
combine migration and gain matrices that are updated during the search,
allowing the simultaneous use of different migration policies within the same
model. Thus, individuals cooperate and share their information throughout
the evolutionary process. The choices of the best migrations are improved us-
ing the QLearning approach, which aims to learn the best migration options
by each user. The results show that the QLeaning significantly improves the
accuracy of the results. A parallel study addresses the context of population
size versus the number of generations, where results show that increasing
the number of individuals and reducing the number of generations does not
benefit the quality of the results. As in Qinxue et al. clustering-based ap-
proach, in contrast to ours, the Lardeux et al. method allows variation of
island population size through the selection of individual migration choices,
but it does not apply the flexibility of reconfiguration.

From our side, Silveira et al. [6] proposed a variety of static HePIMs
running four different BAs on their islands. HePIMs maintained population
diversity by covering the solution space and reducing overlap between islands
compared to HoPIMs. In [7], the authors go a step forward, maintaining the
population diversity provided by HePIMs, and increasing their flexibility, al-
lowing BA reconfiguration on islands during execution according to their per-
formance, where the islands may substitute their BAs periodically during the
evolutionary process. Results were competitive regarding the best-adapted
HoPIMs, demonstrating the potential of adding such (periodic) reconfigura-
tion capability to HePIMs. After a series of exhaustive experiments, the cur-
rent work shows how refining the dynamism of reconfiguration, reaching the
stagnation-based reconfiguration approach, such innovative ability adds the
required flexibility and diversity to HePIMs to outperform the best-adapted
HoPIMs.

Nssibi et al. [26] survey nature-inspired metaheuristic methods in the
field of machine learning, more specifically for feature selection. In this per-
spective, the authors include a section highlighting the strength of island
models in recent works to solve the feature selection problem. The authors
discuss works related to homogeneous island models, such as the Harris Hawk
Optimization algorithm with islands organized over master-slave communi-
cation topology. The slave processors have a swarm of hawks, which send
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the best solutions to the master island when the results of their local opti-
mization are available. Also, they survey models with a moth flame opti-
mization algorithm using random ring topology with an elitist policy: the
best immigrants replacing the worst natives. A multi-objective evolutionary
procedure with an evolutionary engine based on the non-dominated sorting
GA is also considered, where the islands are organized through a dynamic
complete graph and elitist migration policy. Moreover, they survey parallel
PSO models where a ring topology organizes the islands, and the migration
policy consists of sending the best individual and only replacing the worst
native if the immigrant has better fitness. The survey does not address
island-based algorithm-adaptative or algorithmic reconfigurable mechanisms
as those introduced in the reconfigurable island models mentioned in this
paper. Hence, we believe that the innovative reconfigurable PIMs here in-
troduced constitute a significant way for further investigations to improve
island-based bio-inspired algorithms.

4. Reconfigurable HePIMs with stagnation policy

4.1. Communication Topologies

The introduced stagnation-based reconfigurable models select one static,
and one dynamic topology that successfully addressed URD in [4, 7].

The static topology is a 12-island bi-directional binary tree, and the dy-
namic topology is the 12-island complete graph (see Fig. 2).

In the complete graph topology all pairs of islands may exchange indi-
viduals. The island communication dynamism is acquired by exploring the
diversity and quality of each island, given by fitness variance and average
metrics. Variance measures islands’ diversity: high variance represents high
individuals’ diversity, improving the chances of evolution into islands. The
fitness average measures the quality of island populations. According to such
metrics, the islands are ranked as good, bad, and medium. Migrations ex-
change individuals between good and bad islands, and medium and medium
islands only (for short, gbmm).

4.2. Reconfigurable islands

Reconfigurable HePIMs were proposed initially in [7]. The dynamic com-
plete graph model classifies islands according to their fitness average and
variance and uses it to build neighborhoods during the evolutionary process.
A master island is responsible for receiving data from all islands; it ranks
and notifies the worst island. The worst island reconfigures (i.e., replaces)
its algorithm with the algorithm of the best-ranked island. Furthermore, the
reconfiguration process is controlled by a parameter called reconfiguration
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Island 2

Island 3

Island 4

Island 5

Island 6

Island 7
Island 8

Island 9

Island 10

Island 11

Island 12

Island 1 Island 1

Island 2

Island 4 Island 5

Island 8 Island 9 Island 10

(a) (b)

Island 3

Island 6 Island 7

Island 12Island 11

Figure 2: (a) A dynamic complete graph topology. (b) binary tree topology. In (a,)
for simplicity, only a subset of the edges between all islands are included.
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Figure 3: Example of periodic reconfiguration in the dynamic complete graph topology.
For simplicity, only a subset of the edges between all islands are included. In each recon-
figuration cycle, according to the number of generations defined by the parameter RF, the
gray island has the best performance, and the red-dotted island, with the worst perfor-
mance, has its BA updated to the BA being executed by the gray island.

frequency (RF). The RF establishes the number of evolutionary generations
to (periodically) perform a reconfiguration step. The dynamic reconfigu-
ration allows updating the BAs executed in their islands. In [7], authors
implemented two HePIMs: P recHet

Tr12A and P recHet
gbmm12A. The former uses the static

binary tree topology, and the latter uses the dynamic complete graph topol-
ogy; both models are asynchronous and evolve through a refined migration
policy that allows the exchange of individuals, maintaining diversity. Fig. 3
shows reconfiguration cycles, taking the P recHet

gbmm12A model as an example.
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4.3. Stagnation-based Reconfigurable HePIMs

This paper refines the models proposed initially in [7]. Instead of per-
forming a reconfiguration phase after a fixed number of generations (given by
the parameter RF), the new model may reconfigure the current BA in each
island to the best BA in all evolutionary generations (See Figure 4). The
best BA is the BA used by the island showing the highest progress in a fixed
interval of generations. This interval is given by a BA classification interval
(BACI) parameter. Exhaustive experiments showed that a good metric to
evaluate the progress of the islands is granted by the difference between the
best individual fitness at the beginning and the end of the interval.
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Figure 4: Example of stagnation-based reconfiguration on the complete graph topology.
For simplicity, only a subset of the edges between all islands are included. The yellow is-
lands represent stagnated islands in each generation that have undergone reconfiguration
to the BA algorithm executed by the best performance island, in gray, computed at the
beginning of each cycle of evolutionary generations defined by the parameter BACI.

Furthermore, since the best BA is not known during the initial BA clas-
sification interval, reconfigurations only start after it. Once the first phase
of the classification of BAs is performed, stagnated islands will continuously
update their current BA to the best BA. Island stagnation is understood as
not improving the best individual fitness in the last three generations.

The new stagnation-based reconfigurable HePIMs are denoted according
to their topology as P recHetStag

Tr12A and P recHetStag
gbmm12A .

5. Experiments and analysis of accuracy

As in [7], all PIMs, including the new reconfigurable models, were imple-
mented using the MPI library of C in Linux, and for the sake of comparison,
experiments were executed on a computational platform using two Xeon E5-
2620 2.4 GHz six-core processors with hyper-threading.

The basis for comparing the performance of PIMs, are sequential versions
of GA, GAD, and DE with populations of size 24n log n, for inputs of length n,
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and 200 generations. For a fair comparison, all PIMs deal with populations
of the same size. Also, we select three static binary three and three dy-
namic complete graph 12-island asynchronous HoPIMs, designed in [4], each
running one of the BAs: GA, GAD, and DE. In addition, two asynchronous 12-
island HePIMs, with the topologies of the HoPIMs above, presented in [6],
were adjusted, running in their islands the BAs GA, GAD, and DE. Finally, two
asynchronous 12-island reconfigurable HePIMs, with identical topologies as
above, and applying (periodic) reconfiguration at fixed generation frequencies
were adapted from [7].

The homogeneous models are P GA

Tr12A, P GAD

Tr12A, P DE

Tr12A, P GA

gbmm12A, P GAD

gbmm12A and
P DE

gbmm12A. The superscripts denote the BA used by the homogeneous model.
The subscript prefixes indicate whether the model uses the static tree (Tr)
or the dynamic complete graph topology (gbmm), and the subscript suffix
12A indicates the number of islands and that the model is asynchronous.
Furthermore, it is essential to point out that the homogeneous model P DE

gbmm12A

provides the best solutions for the URD problem.
The heterogeneous models are PHet

Tr12A and PHet
gbmm12A, and the reconfig-

urable HePIMs with fixed (periodic) reconfiguration frequency are P recHet
Tr12A

and P recHet
gbmm12A. The new HePIMs with stagnation-based reconfiguration are

P recHetStag
Tr12A and P recHetStag

gbmm12A . All PIMs have the following configuration:

• Each island has 2n log n individuals, for inputs of length n;

• Initially, islands 1, 4, 8 and 12 run GA, islands 2, 6, 7 and 11 GAD, and
islands 3, 5, 9 and 10 runs DE;

• Generation number is fixed at 200.

5.1. Parameter Setup

We use the parameters for BAs, HoPIMs, and HePIMs obtained in [6]
and [7]. The parameter tuning adopted the “taxonomy T1” in [27]. Table
1 presents the parameter ranges. For percentages, the tested values range
between 2% and 100%. For probabilities, the values range from 0.02 to 1.0,
and for the mutation parameter, from 0.01 to 0.02. For DE, the FM parameter
is set in the range of 1% to 2%. The upper bound of 2% was defined based
on the analysis of our parameter adjustment process, in which solutions with
FM greater than 2% substantially degrade the quality of the solutions.

Table 2 presents the parameter configuration for sequential versions and
HoPIMs, while Table 3 shows the parameters for HePIMs.
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Table 1: Parameter Value Ranges

Parameter Parameter values

GA and GAD

crossover 0.02, 0.04, · · · , 0.98, 1.0
mutation 0.01, 0.011, · · · , 0.019, 0.02
selection 2%, 4%, · · · , 98%, 100%

replacement 2%, 4%, · · · , 98%, 100%

DE
PC 0.02, 0.04, · · · , 0.98, 1.0
FM 1%, 1.1%, · · · , 1.9%, 2%

Migration

IN 1,2,3,4,5,6,7,8,9,10,11,12,13
EMI 1=Best, 2=Worst, 3=Random
EP 1=Clone, 2=Remove
IMI 1=Worst, 2=Random, 3=Similar
MI 2%, 4%, · · · , 98%, 100%

Table 2: Parameter Settings for GA, GAD, DE and associated HoPIMs.

Parameter GA PGA
Tr12A PGA

gbmm12A GAD PGAD
Tr12A PGAD

gbmm12A DE PDE
Tr12A PDE

gbmm12A

crossover 0.90 0.98 0.96 0.92 0.98 0.98

mutation 0.02 0.015 0.011 0.01 0.01 0.01

selection 60% 92% 94% 98% 98% 94%

replacement60% 70% 70% 90% 80% 90%

PC 0.74 0.72 0.78

FM 1% 1.4% 1%

IN 9 5 12 5 3 5

EMI 1 1 1 1 1 1

EP 2 2 2 1 1 2

IMI 1 1 1 1 1 1

MI 30% 30% 14% 12% 14% 12%

Table 3: Parameter Settings for HePIMs.

ParameterPHet
Tr12A PHet

gbmm12A P recHet
Tr12A P recHet

gbmm12A P recHetStag
Tr12A P recHetStag

gbmm12A

IN 3 6 3 6 3 6

EMI 1 3 1 3 1 3

EP 2 2 2 1 2 1

IMI 3 3 3 3 3 3

MI 10% 10% 10% 14% 10% 14%

RF 14% 24%

BACI 10% 10%

5.2. Analysis of Accuracy

The experiments were conducted as described below, considering prelim-
inary results on reconfigurable models obtained in [7].
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• The evolutionary process was extended to 200 generations for all sam-
ples to guarantee the desired effect from the reconfigurable approach.
In previous works, the number of evolutionary generations was fixed as
the length of the permutation inputs reaching the maximum number
in samples of length 150 evolved during 150 generations (cf [6, 7]).

• The PSO algorithm, used by HePIMs in previous work, is no longer
used as an evolutionary engine because it always performs much worse
than algorithms: GA, GAD and DE. When considering heterogeneous
versions, the PSO maintained a slice of three islands, and due to its
inferior performance, it negatively impacted the solutions of heteroge-
neous PIMs (see [7]).

• We diversified the length of the input instances:

– For each permutation length, n ∈ {100, 110, . . . , 150}, one package
of one hundred unsigned permutations with n genes was randomly
generated;

– All PIMs were executed ten times (a total of one thousand exe-
cutions) using each one of the permutations of length n and the
average of these executions for each permutation was taken as the
result. The average gives the computed number of reversals for
each unsigned permutation.

The radar chart in Figure 5 compares the sequential algorithms GA, GAD,
and DE. Since URD is a minimization problem, the smaller the output, the
higher the accuracy. The radar chart shows that DE presents the best and
GA the worst solutions. The algorithm GAD only computes better solutions
than DE for inputs of length 130. The genetic algorithm variants GA and GAD

behave differently as the search space increases: for permutations of length
100 and 110, GA provides the best solutions, but the scenario is reversed for
longer inputs.

The radar charts in Figure 6 and the left side radar chart in Figure 7
show results from the HoPIMs. They show how sequential versions are easily
overcome by HoPIMs, and that the accuracy of the outputs computed by
dynamic HoPIMs is better than the outputs computed by static versions.
The three radar charts have different scales, and for comparison, the right
side radar chart in Figure 7 presents all static and dynamic homogeneous
PIMs. The best-adapted model is the dynamic HoPIM with BA DE, P DE

gbmm12A.
The strength of dynamic models has already been presented in previous work.
The property of not having a fixed neighborhood allows faster dissemination
of genetic material with high evolutionary potential among the islands. A
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less dominant scenario is obtained with experiments involving HoPIM from
the GA as seen in the left side radar chart in Figure 6, where only for inputs of
size 100, 110, it is possible to see a substantial improvement of the dynamic
HoPIM.

The left and right side radar charts in Figure 8 compares the results of
the static and dynamic HePIMs versus the best static and dynamic HoPIMs,
P DE

Tr12A and P DE

gbmm12A, respectively. Regarding static models (see left side chart),
the HoPIM presents the worst solutions. The static neighborhood scenario
imposed by the binary tree topology benefits HePIMs because islands al-
ways send and receive individuals with different evolutionary characteristics,
which favors not being trapped in local optima. The static HePIMs show very
similar behavior, with the proposed stagnation-based reconfigurable model
P recHetStag

Tr12A not performing better than the competing periodic reconfigurable
model P recHet

Tr12A , and the heterogeneous model, PHet
Tr12A. Considering longer in-

stances of the URD problem, the periodic reconfigurable model, P recHet
Tr12A , is the

best static HePIM. On the other hand, the stagnation-based reconfiguration
method succeeded for the dynamic topology (see the right side chart); indeed,
P recHetStag

gbmm12A presented the best quality solutions, and the distance to the second
best model (P DE

gbmm12A) becomes even more significant when considering large
instances of the URD problem.

The radar chart in Figure 9 compiles all results in both radar charts in
Figure 8 using the same scale. In this radar chart, it is clear how the migra-
tion policy on the dynamic topology of the complete graph model jointly with
stagnation-based reconfiguration approach provided by the model P recHetStag

gbmm12A

give the required diversity to outperform all other heterogeneous and recon-
figurable heterogeneous, and the best adapted homogeneous models.

A point that will arouse the reader’s curiosity about the reconfiguration
method is how the islands end up when all generations are executed. After
the evolutionary cycle, both P recHetStag

Tr12A and P recHetStag
gbmm12A have all the islands run-

ning the same BA, and both become homogeneous. The average number of
generations required for the models to become homogeneous is shown in Fig-
ure 10. The P recHetStag

Tr12A needs more generations until it becomes homogeneous
compared with the P recHetStag

gbmm12A , except for the sample size 120. Also, regardless
of the model, the reconfiguration process is complete before reaching 100
generations.

Another question is which BA is dominant? Investigating the input sam-
ples for both stagnation-based reconfigurable models, P recHetStag

Tr12A and P recHetStag
gbmm12A

we have the scenario presented in Table 4. Only DE and GA are being shown
because there were no samples where the islands ended running the algo-
rithm GAD. The values in the table are the percentage of inputs ending with
all islands executing either the algorithm DE or GA. The algorithm DE is dom-
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inant for all samples. In addition, the fact that the algorithm GAD never has
dominance is unusual since, as shown in Figure 5, it delivers better quality
solutions than the algorithm GA. We investigated it and realized that the
HoPIMs from the GA present better solutions than GAD if we consider a max-
imum of 150 generations (see Figure 11). Furthermore, as seen in Table 4,
before 100 generations, all islands have already become homogeneous. We
can attribute the success of model P recHetStag

gbmm12A to the aptitude of the dynamic
topology and the fact that it becomes homogeneous earlier. Hence, the evo-
lutionary engine DE has more time to evolve a population that already has
individuals shaken by GA and GAD, which makes it difficult to stay stuck in
great locations.

Finally, partial accuracy results of P DE

gbmm12A and P recHetStag
gbmm12A during the evo-

lutionary cycle are compared in Figure 12. We use the population average
to measure island development at intervals of 20 generations. The dynamic
stagnation-based reconfigurable model P recHetStag

gbmm12A produces populations better
adapted to the URD problem regardless of the analyzed interval. Although
the partial accuracy evolution between both models is always very close, it
is noticeable that the advantage caused by heterogeneity and algorithmic
stagnation-based reconfiguration (regarding the best adapted homogeneous
model P DE

gbmm12A) at the beginning of the evolutionary cycle is maintained after
the model becomes homogeneous.

Table 4: Configuration of islands of the reconfiguralbe HePIMs PrecHetStag
Tr12A and PrecHetStag

gbmm12A

at the end of the evolutionary cycle (200 generations).

Length
P recHetStag

Tr12A P recHetStag
gbmm12A

DE GA DE GA

100 90% 10% 100%

110 100% 80% 20%

120 100% 100%

130 90% 10% 90% 10%

140 100% 70% 30%

150 90% 10% 90% 10%

5.3. Performance

The speed-up of the homogeneous models P DE

Tr12A and P DE

gbmm12A was evalu-
ated regarding the runtime of the sequential algorithm DE. The input dataset
with permutations of length 150 was chosen because such permutations rep-
resent more challenging, inherently complex problems than shorter permu-
tations. The algorithms P DE

gbmm12A, P DE

Tr12A, and DE were executed ten times for

16



100

110120

130

140 150

77 .03 77 .08 77 .13 77 .18
77 .23
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121 .66

122 .06

122 .47

122 .88

Figure 5: Accuracy of the sequential BAs: GA, GAD and DE. The radar chart is scaled
according to the worst performance for each input size. Since the target optimization
problem URD is a minimization problem, the smaller the radius the better the result.
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77 .01 77 .05 77 .08 77 .12 77 .15
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112 .08

112 .38

112 .69

112 .99

120 .5

121 .09

121 .69

122 .28

122 .88

Tr12A

gbmm12A

Figure 6: Left side radar chart: accuracy of the HoPIMs from GA. Right side radar chart:
Accuracy of the HoPIMs from GAD. Each radar chart is scaled according to the performance
of the associated sequential algorithm since it provides the worst performance.

each permutation in the dataset, and the meantime is the average runtime.
The dynamic homogeneous model P DE

gbmm12A reached a speed-up of 7.18 while
the static homogeneous model P DE

Tr12A a speed-up of 8.37.
Due to the nature of HePIMs, where groups of islands run different BAs,

it is not easy to decide which sequential BA would be the reference to com-
pute the speed-up; thus, the Table 5 shows the speed-up of heterogeneous
models concerning the BAs GA, GAD, and DE. The methodology to com-
pute speed-ups for HePIMs is the same applied to HoPIMs. The simple
versions of HePIMs provide the best speed-ups. Static HePIMs deliver bet-
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Figure 7: Left side radar chart: accuracy of the HoPIMs from DE. Right side radar chart:
Comparison of the accuracy of all HoPIMs. The first radar chart is scaled according to
the accuracy of the sequential model, while the second radar chart is scaled according to
the model with the worst accuracy for each input length.
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gbmm12A
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Figure 8: Comparing accuracy of (left side radar chart) static models: HoPIM from DE and
HePIM, and reconfigurable HePIMs, and (right side radar chart) dynamic models: HoPIM
from DE and HePIM, and reconfigurable HePIMs. The charts are scaled according to the
model with the worst performance. For the static tree topology model, the homogeneous
model, PDE

Tr12A has the worst accuracy; for the dynamic complete graph topology model,
the stagnation-based reconfigurable HePIM presented the bests accuracy.

ter performances than dynamic HePIMs since dynamic topology PIMs build
neighborhoods for the islands at each migratory cycle. The proposed recon-
figuration process involves sophisticated techniques that improve the quality
of the solutions; however, it impacts performance. The stagnation-based
reconfigurable HePIMs P recHetStag

Tr12A and P recHetStag
gbmm12A are slower than the periodic

reconfigurable models P recHet
Tr12A and P recHet

gbmm12A since they make use of an effortless
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Tr12A
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Figure 9: Radar chart compiling all accuracies in Figure 8. The chart is scaled according
to the accuracy of the static homogeneous model PDE

Tr12A providing the worst performance.
The best accuracy is obtained in all cases by the dynamic stagnation-based reconfigurable
heterogeneous model, PrecHetStag

gbmm12A .

Figure 10: The diagram shows the number of generations required for the reconfigurable
HePIMs PrecHetStag

Tr12A and PrecHetStag
gbmm12A to become HoPIMs; i.e., to homogeneously run the same

BA in all their islands.

reconfiguration process.

5.4. Statistical Analysis

Statistical tests validated experiments with a significance level α = 0.05,
i.e., 5% chance of incorrectly rejecting the null hypothesis in the long term.
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Figure 11: The radar chart shows the accuracy obtained by static and dynamic HoPIMs
from GA and GAD with an evolutionary history of 150 generations. Compare with the
radar chart on the right of Figure 7 showing that in experiments with 200 generations not
necessarily the GA based homogeneous models provide the best performance. Also, observe
in Table 4 that no reconfigurable model finish running GAD in all its islands.

Figure 12: Comparing the partial evolution during 200 generations of the best models:
HoPIM PDE

gbmm12A and reconfigurable HePIM PrecHetStag
gbmm12A .

The samples are the sets of one hundred outputs considered in Section 5.2.
The first step is applying the Friedman non-parametric statistical test to
define the control algorithm. Then, the multiple hypothesis testing Holm’s
method was used to check the null hypothesis that the performance of the
control algorithm is the same concerning the remaining algorithms. The
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Table 5: Speed-up for HePIMs regarding the sequential version of GA, GAD, and DE for the
dataset with genomes of length 150

PHet
Tr12A PrecHet

Tr12A PrecHetStag
Tr12A PHet

gbmm12A PrecHet
gbmm12A PrecHetStag

gbmm12A

GA 6.69 6.40 5.33 6.42 5.86 5.14

GAD 6.40 6.12 5.09 6.14 5.61 4.92

DE 7.68 7.35 6.12 7.37 6.73 5.9

application of Friedman’s test and Holm’s method was motivated by the
discussion [28].

Table 6 presents the statistical results for the HePIMs and the best
HoPIM (P DE

gbmm12A). The Friedman test selects P recHetStag
gbmm12A as the control al-

gorithm. Holm’s method rejects the null hypotheses (for p-value ≤ 0.05).
Hence, the model P recHetStag

gbmm12A has statistical significance for all other HePIMs
regardless of the input. On the other hand, when compared with the algo-
rithm P DE

gbmm12A, the results showed significance only for inputs with a length
greater than 130. In Table 6, an algorithm has statistical significance, when-
ever p-value ≤ α/i.

6. Conclusions and future work

This work consolidates the reconfigurable heterogeneous Parallel Island
Models, introduced in [7], presenting the innovative approach of stagnation-
based reconfiguration. Through stagnation-based reconfiguration, islands
may dynamically update their local bioinspired algorithm at each genera-
tion of the evolutionary process. In contrast to the periodic reconfiguration
mechanism, proposed initially in [7], where island reconfiguration was par-
simoniously performed accordingly to a fixed generational frequency, and
only updating the algorithm being executed in the island with the worst
by the algorithm applied by the island with best performance, this exhaus-
tive stagnation-based reconfiguration mechanism provides a reconfigurable
dynamic heterogeneous PIM, P recHetStag

gbmm12A , that outperforms all other parallel
island models, even the best-adapted homogeneous PIMs (that use DE in all
its islands) and other heterogeneous (reconfigurable) PIMs.

Experiments evaluated statistically show that the proposed reconfigu-
ration technique is practical and provides competitive solutions with the
reference models for the unsigned reversal distance NP-hard optimization
problem.

This work offers attractive further investigation opportunities. On the
one side, from a practical perspective, it is natural to infer that, after enough
evolutionary generations, the reconfiguration feature on HePIMs provides a
natural mechanism to converge to the best-adapted homogeneous PIM to
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any optimization problem. Nevertheless, it is relevant to investigate how dy-
namic reconfigurable heterogeneity provides advantages at the beginning of
evolution that the model can preserve during all generations of the evolution-
ary process (without the necessity to perform the best-adapted bioinspired
algorithm). Hence, the interest in performing experiments with a greater di-
versity of recent bioinspired algorithms (e.g., elephant herding behavior [29],
social spider algorithm [30]). Regarding other target optimization problems,
it is required to investigate how the flexibility of the new reconfigurable HeP-
IMs adapts to solve different optimization problems. In particular, algorith-
mic heterogeneity appears adequate to address multi-objective optimization
problems (e.g., [31, 24, 32]). Indeed, heterogeneity and the flexibility of re-
configuration will facilitate the application of the best-adapted BA to each
objective optimization problem being addressed by each island.
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Table 6: Holm test for PDE
gbmm12A x HePIMs.

Length Control i Algorithm p-value α/i

100

6 PrecHetStag
Tr12A 1.2258954459292176E-13 0.008

5 PHet
gbmm12A 1.7734111951013715E-13 0.010

PrecHetStag
gbmm12A 4 PHet

Tr12A 1.980967305825471E-8 0.0125

3 PrecHet
Tr12A 2.761583790983588E-7 0.016

2 PrecHet
gbmm12A 8.381464733500173E-7 0.025

1 PDE
gbmm12A 0.7188026245529647 0.05

110

6 PrecHetStag
Tr12A 3.6506733156072896E-20 0.008

5 PrecHet
Tr12A 9.571441858241067E-14 0.01

PrecHetStag
gbmm12A 4 PHet

gbmm12A 9.62783195797665E-13 0.012

3 PrecHet
gbmm12A 9.107359384790177E-11 0.016

2 PHet
Tr12A 4.996646058399122E-10 0.025

1 PDE
gbmm12A 0.4515390224098334 0.05

120

6 PrecHetStag
Tr12A 1.927919232582314E-21 0.008

5 PrecHet
gbmm12A 2.200327289088137E-12 0.01

PrecHetStag
gbmm12A 4 PHet

gbmm12A 8.169951697851222E-11 0.012

3 PHet
Tr12A 1.933815449552944E-10 0.016

2 PrecHet
Tr12A 3.4787444807522945E-8 0.025

1 PDE
gbmm12A 0.47145170683892584 0.05

130

6 PrecHetStag
Tr12A 1.6510072254753912E-27 0.008

5 PHet
gbmm12A 4.422946724480415E-12 0.01

PrecHetStag
gbmm12A 4 PHet

Tr12A 1.2595868719961186E-10 0.012

3 PrecHet
gbmm12A 2.9565205977131737E-10 0.016

2 PrecHet
Tr12A 6.824213461036749E-10 0.025

1 PDE
gbmm12A 0.5891354643621368 0.05

140

6 PrecHetStag
Tr12A 1.027115868211875E-31 0.008

5 PHet
Tr12A 5.757742850114732E-20 0.01

PrecHetStag
gbmm12A 4 PrecHet

gbmm12A 1.5126612148387156E-18 0.012

3 PrecHet
Tr12A 1.749612437192936E-18 0.016

2 PHet
gbmm12A 2.413141855941992E-16 0.025

1 PDE
gbmm12A 8.925709019458667E-4 0.05

150

6 PrecHetStag
Tr12A 4.288491503871603E-45 0.008

5 PHet
Tr12A 3.257446176124881E-31 0.010

PrecHetStag
gbmm12A 4 PrecHet

Tr12A 9.286667219420533E-24 0.012

3 PrecHet
gbmm12A 4.629733664111373E-22 0.016

2 PHet
gbmm12A 8.052342507094246E-17 0.025

1 PDE
gbmm12A 2.4159005413133192E-5 0.05
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