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Abstract—Designing efficient parallel island Genetic Algo-
rithms (GA) is a difficult task: several decisions are needed
related to the adequate structure of the islands, how they are
connected, how many individuals should migrate, and how often
they should migrate. The impact of these choices has not yet been
fully understood since they might vary for different problems. In
previous work, a variety of island model GAs to solve Reversal
Distance Problem (RDP) over uni-crhomosomal genomes were
proposed from which adequate choices were pointed out that
provided results with an excellent balance among accuracy and
performance. In this work, another evolutionary problem is con-
sidered in order to analyze how general were the decisions taken
for island model GAs over RDP. The problem is translocation
distance over multi-chromosomal genomes, which involves the
interchange of gene between different chromosomes. Despite the
fact that this problem falls also in the category of evolutionary
distance problems, it is different from the RDP. Regarding
accuracy, island models using a dynamic communication topology
for exchange of individuals between islands provided the best
solutions; while regarding performance, models using a static
topology reached the highest speedup. Comparing with previous
work on RDP, it was observed that islands models that did not
provided good accuracy in RDP provided good quality solutions
for translocation distance problem, while the best island models
for RDP did not repeat the same success for translocation
distance problem. The only invariant is that all the island model
GAs in addition to competitive speedups provided better results
than the corresponding sequential GA.

I. INTRODUCTION

Genetic Algorithms (GAs) are stochastic search methods
that have been successfully applied to many search, opti-
mization, and machine learning problems. The evolutionary
process consists of maintaining a population of coded solu-
tions which are manipulated by variation operators to find a
satisfactory optimized solution. A characteristic of GAs is the
high computational time required for their executions when it
involves treatment of NP-hard and NP-complete problems.
One solution to speeding up the computation of solutions is
to apply parallelism, since GAs can be implemented relatively
easy to run in parallel architectures.

There is a variety of parallel model architectures in the
literature [1], which can be used in GAs. A good option is the
coarse granularity model, also known as island model, which
favors achievement of both higher accuracy and performance.
This model consists of a set of islands holding instances of
GAs evolving their own populations locally and periodically;
candidate solutions are exchanged between islands in a process

called migration. This movement of solutions is conditioned
by a migration policy and involves parameters that need to be
carefully calibrated to obtain good results.

There are several papers showing the effectiveness of
working with island models looking for performance [2],
[3], [4] and accuracy [5], [6], [7], [8]. Motivated by these
results, previous authors’ work analyzed the impact caused by
the parameters communication topology and migration policy
varying the amount of individuals allocated in each island. The
proposed island models were applied in evolutionary distance
problems [9], [10].

Results of high quality were obtained for evolutionary
distance problems using as measure the operation of reversion
over unsigned uni-chromosomal genomes [10], which is a
well-known NP-hard problem [11]. In that work parallel
homogeneous island models were proposed, where in all
islands a GA with the same configuration of parameters
is applied; and, the migration strategy exchanges the same
number of individuals through the communication topology of
the islands. Experiments, with models with different amount of
islands, populations, and topologies, but maintaining the same
total population, were performed and compared. Experiments
were performed for a unique case-of-study (reversal distance
problem), which implies that general conclusions over the
adequability of the behaviour of the different parallel model
were restricted. The current work deals with the interesting
case of translocation distance problem with the aim of ana-
lyzing if the same behaviors are observed as for island models
using as case-study the reversal distance problem. From this
perspective, calibration of parameters such as communication
topology between islands, number of individuals involved in
the migratory process, migration interval and number of is-
lands also are replicated when using the translocation distance
problem were considered.

The first parallel island models treatment for the transloca-
tion distance problem was the memetic approach given in [12],
where two communication topologies and a regular migration
policy repeated at each generation were proposed reusing
parameters calibrated for a sequential version. However, the
results provided by the island models were not satisfactory,
presenting less accuracy than the sequential version. In con-
trast to the last approach, the current work develops and
performs such GA island models for the translocation distance
problem with a careful setting phase to find the best values



for the parameters involved in migration policies and breeding
cycle.

Reversions apply over uni-chromosomal genomes contain-
ing a simple genetic structure inverting just a contiguous
subsequence of the whole genome, while translocations are
applicable only to multi-chromosomal genomes. A transloca-
tion operation splits two different chromosomes of a multi-
chromosomal genome and then joins the resulting blocks to
construct two new chromosomes. Thus, genome distance can
be modelled as an optimization problem which consists in
finding the minimum number of such operations necessary
to transform one genome into another one. According to
the used operation, reversal and translocation distance are
discriminated. These problems have two versions: one using
signed genomes with polynomial solution and the other using
unsigned genomes that is NP-hard. This paper deals with the
unsigned translocation distance problem (UTD). Of course, as
NP-hard problems, these problems are expressive enough to
”encode” any other NP problem.

It is important to stress that reversal and translocation
distance are different problems not only because they apply
to uni- and multi- chromosomal genomes, but also because an
instance of the reversal distance problem will always have a
solution, which is not true for translocation distance problem.
Two genomes with the same genes must satisfy specific
properties to evolve one into the other through translocations
as presented in Section II-A.

The paper is organized as follows: Section II presents
definitions and terminology; Section III presents the parallel
GA approaches for the UTD problem; Section IV presents
experiments and results; and, before concluding and discussing
future work in Section VI, Section V discusses the results. The
source code and data used in the experiments is available at
genoma.cic.unb.br.

II. BACKGROUND

A. Definitions and Terminology
A gene is represented by an integer number, where ori-

ented and non oriented genes are modeled by signed and
unsigned integers, respectively. A chromosome is a finite
sequence of genes and a genome is a set of chromosomes.
Formally, a genome G with N chromosomes and n genes
is a set {(x11, . . . , x1r1), · · · , (xN1, . . . , xNrN )}, where n =∑N

k=1 rk and |xij | 6= |xkl| whenever i 6= k or j 6= l. For
1 ≤ i ≤ N and 1 ≤ ji ≤ ri, if xiji ∈ [±n] = {±1, . . . ,±n}
then G is called a signed genome, whereas if xiji ∈ [n] =
{1, . . . , n} then G is an unsigned genome. Notice that, if
N = 1, an unsigned genome is a permutation that belongs
to the well-known symmetric group Sn, whereas if G is a
signed genome then it is a permutation of S2n [10], [13].

For an interval I = [xi, . . . , xj ] within a signed (respec.
unsigned) chromosome X = (x1, . . . , xk), one denotes −

←−
I =

[−xj , . . . ,−xi] (respec.
←−
I = [xj , . . . , xi]) the reversed inter-

val builded from I . A chromosome does not have orientation.
It means that the chromosome X is equal to −

←−
X , if X is over

[±n], whereas X and
←−
X are the same if X is over [n].

A translocation is an operation that acts over two
chromosomes of a genome. There are two types of
translocations: prefix-prefix and prefix-suffix. Let G =
{X1, . . . , X, . . . , Y, . . . , XN} be a genome and X =
(x1, . . . , xl) and Y = (y1, . . . , ym) two chromosomes of
G. A prefix-prefix translocation ρ(X,Y, xi, yj), 1 ≤ i < l,
1 ≤ j < m, applied over G maintains the prefixes of X and
Y and switches their suffixes, that is,

Gρ(X,Y, xi, yj) = {X1, . . . , X
′, . . . , Y ′, . . . , XN}, where

X ′ = (x1, . . . , xi, yj+1, . . . , ym) and
Y ′ = (y1, . . . , yj , xi+1, . . . , xl).

It is not necessary to specify whether G is a signed or an
unsigned genome when one defines a prefix-prefix transloca-
tion once this concept is similar for both cases. A prefix-suffix
translocation θ(X,Y, xi, yj), 1 ≤ i < l, 1 ≤ j < m, applied
over G maintains the prefix of X and the suffix of Y and
interchanges the suffix of X with the prefix of Y , that is,

Gθ(X,Y, xi, yj) = {X1, . . . , X
′, . . . , Y ′, . . . , XN}, where

X ′ = (x1, . . . , xi,−yj , . . . ,−y1) and
Y ′ = (−xl, . . . ,−xi+1, yj+1, . . . , ym),

when G is a signed genome and

X ′ = (x1, . . . , xi, yj , . . . , y1) and
Y ′ = (xl, . . . , xi+1, yj+1, . . . , ym),

when G is an unsigned genome (See Figure 1).
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Fig. 1. Prefix-prefix and prefix-suffix translocations over a signed genome.

Example: Consider the signed genomes

A = {(+1,+3), (+4,−8,+5,+2,+6), (+7,+9)}, and
B = {(+1,+2,+3), (+4,+5,+6), (+7,+8,+9)}

Observe that,

A = {(+1,+3), (+4,−8,+5,+2,+6), (+7,+9)}
Aρ1 = {(+1,+2,+6), (+4,−8,+5,+3), (+7,+9)}
Aρ1ρ2 = {(+1,+2,+3), (+4,−8,+5,+6), (+7,+9)}
Aρ1ρ2θ1 = {(+1,+2,+3), (+4,−8,−7), (−6,−5,+9)}
Aρ1ρ2θ1θ2= {(+1,+2,+3), (+4,+5,+6), (+7,+8,+9)}

Thus, the prefix-prefix translocations ρ1 and ρ2 together with
the prefix-suffix translocations θ1 and θ2 transform A into B.

Given a chromosome X = (x1, . . . , xl) the elements of
the set {x1,−xl} are called tails of X , if X is a signed
chromosome, whereas the elements of the set {x1, xl} are the
tails of X in the unsigned case. Two genomes are called co-
tails if they have the same set of tails. Notice that if G is a



genome and ρ is a translocation, then Gρ and G are co-tails;
thus, to ensure that a genome A can be transformed into a
genome B by translocations, one must require that A and B
are co-tails. The two versions of the genome rearrangement
problem by translocations are defined as below.
• Unsigned Translocation Distance Problem (UTD):

given two unsigned co-tails genomes A and B with the
same number and over the same set of genes, determine
the minimum number of translocations needed to trans-
form A into B. One can assume that the genes of B are
in increasing order. One calls B an identity genome.

• Signed Translocation Distance Problem STD: it is
defined analogously to UTD, but in this case A and B
are signed co-tails genomes and the genes of the signed
identity genome B are positive and in increasing order.

If ρ1, . . . , ρk is a shortest sequence of translocations such that
Aρ1 . . . ρk = B then k is called the translocation distance
between A and B. In the previous example, the translocation
distance between A and B is 4. Since the identity is sorted,
the UTD and STD problems from A to an identity (that is
co-tail with A) are also referred as the problem of sorting
genome A by translocations. Observe that to sort a genome
A over [±n], it is necessary that its tails include the extremes
+1 and −n, and, for 1 < i < n, if −i is tail then +(i + 1)
must be tail of A. See the example above that sorts A into the
identity Aρ1ρ2θ1θ2 and notice that the genome below cannot
be sorted.

{(+1,+5), (+3,−8,+4,+2,+6), (+7,+9)}

This happens since the genes in all identities are ordered
increasingly and there exist no possible identity with the same
tails than this genome: {+1,+3,−5,−6,+7,−9}.

Zhu and Wang showed that computing the translocation
distance between unsigned genomes is NP-hard [14], thus
algorithms that provide approximated solutions for UTD are
of great interest. On the other hand, STD is in class P . Lin-
ear time algorithms for computing the translocation distance
between signed genomes are presented in [15], [16]. In this
work, a parallel GAs that approximate solutions for UTD are
proposed, whose heuristic use exact solutions for associated
STD computed by the linear time algorithm in [16].

B. Genetic Algorithm for solving UTD

In [17] we present a sequential GA, GAS shown in Al-
gorithm 1, of time complexity O(n3 log n) to solve UTD
for genomes with n genes with the aim of improving the
accuracy of the results provided by the 1.5+ε-approximation
algorithm in [18]. Experiments showed that the proposed
GAS outperforms the quality of solutions computed by the
approximation algorithm. The proposed GAS takes as input a
genome A (to be transformed into a co-tail identity) and its
output is the number of translocations to sort A. Initially, a
population of n log n individuals is built. These individuals
are signed genomes generated by a random attribution of
signs to the unsigned genes in A. Each of these individuals
corresponds to a STD problem with exact solutions that are

also feasible solutions for the unsigned genome A; thus, to
compute the fitness of these signed individuals, the linear
algorithm proposed in [16] is applied. The genetic operations
in GAS work as follows: selection considers 80% of the best
individuals in the population; crossover uses single-point cut
mechanism with probability of 90%, and as a policy of
insertion of the offspring, the candidates to leave the current
population are those that have the 70% worst fitness values.
To improve the population quality, in each generation the two
best individuals of the current population are selected for
which crossover and mutation operations are applied (with
2% probability) generating two new descendants. If the new
offspring individuals are better than those in the population
(regarding their fitness values), they are incorporated in the
current population. Algorithm GAS finishes after completing n
generations.

Algorithm 1: GA for Calculating UTD - GAS

Input: Unsigned genomes A and B (identity genome)
Output: Number of translocations to transforming A into

B
1 Generate the initial population of signed genomes;
2 Compute fitness of the initial population;
3 for i = 1 to Length(A) do
4 Perform selection and save the best solution found;
5 Apply the crossover operator;
6 Apply the mutation operator;
7 Compute fitness of the offspring;
8 Perform replacement of the worst individuals;

C. Parallel Island Models

Islands models are used to implement GAs in parallel with
an island usually representing a processor. In an implemen-
tation of the model, each island runs an instance of the GA
maintaining its own population, such that each island evolves
independently and, periodically, a portion of its population is
exchanged in a process called migration. Migration involves
a set of parameters that impact both the performance and
accuracy of the multi-island algorithm [1]. In this work, a
target island refers to the island that will receive individuals
from a local source island. A brief description of the set of
parameters involved in the migration is given below.
• NumMigIndividuals: represents the amount of individuals

that will be sent and received from one island to another.
• TypeEmIndividual: represents the type of individuals se-

lected for emigration that will be sent to the target island.
The types of individuals are:

1) Better individuals.
2) Worse individuals.
3) Random individuals.
• EmPolicy: represents the emigration policy in the local

island that can be:
1) Clone individuals.



2) Remove individuals.
• TypeImIndividual: represents the immigration policy, se-

lects the type of individuals to be replaced by individuals
who are arriving to the target island, and can be classified
as:

1) Worse individuals.
2) Random individuals.
3) Similar individuals (with the same fitness).
• MigrationInterval: represents the migration interval

defining generations in which exchange of individuals
between islands is allowed and performed.

• Topology: is the organizational model that defines how
islands are connected.

As in [9] MigrationInterval is defined as being a breeding
cycle percentage. One way to increase accuracy and perfor-
mance in island models is to explore the topology parameter,
that can be done both statically and dynamically. In the
static approach, given a set of islands [x1, x2, · · · , xn], the
relationships between two islands xi and xj are fixed at the
beginning of the algorithm and persisted until the end. In
dynamic models, relationships between island may be altered
at each migration cycle to increase the diversity of the genetic
material.

The research to solve URD problem with islands models
proposing a master-slave model started in [19], where isolated
islands were proposed such that each slave process maintains
its own population and executes an instance of the GA. The
master process receives the best fitness values computed by the
slave processes in each stage of the GA. Even applying the
simplest isolated island model, the results of this work were
encouraging providing better solutions regarding the sequential
GA approach.

Two island models to solve UTD problem using a 24×
larger search space than the sequential GA under comparison
were proposed in [12]. The first with islands progressing in
isolation, and the second using a complete graph topology for
communication between islands, and preserving the parame-
ters used in the breeding cycle fixed in [20]. As migration
policy each island sends its the best individual to replace
the worst individual on the target island in each generation.
Surprisingly, the best results were obtained by the isolated
island model; the second proposed model provided worse
results, even than the sequential GA, due to the premature
convergence established by the elitist migration policy, which,
according to [21] and [22], negatively impacts the quality of
the solutions.

The URD problem was further addressed in [23], using
a ring and a complete graph topology. Experiments were
performed in order to set the parameters of GAS and the
migration policy obtaining a configuration which provided the
best results. In addition, two population generation variants
were used: 1) the population of GAS was partitioned into
populations of equal size and distributed among the islands;
2) different populations were separately generated for each
island. From the analysis of results and statistical tests, the

models using population generation 1 provided better solutions
for both ring and complete graph topologies, highlighting
ring topology. Later in [10], static (Fig. 2) and a dynamic
topologies were used, where the dynamism applied consist
of classifying the islands as good, medium and bad, and then
organize the communication between islands according to their
ranking. Indeed, three types of communication organization
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Fig. 2. (a) toru (b) tree (c) x×y net, where x and y represent rows and
columns in the net.

were proposed: 1) communication between islands with the
same classification; 2) communication of good islands with
bad islands and, medium with medium islands; and, 3) random
communication among pairs of islands. The best results con-
sidering accuracy and performance were obtained from models
using a 4 × 3-net static topology and a dynamic topology
using random communication. In both cases, the best option
was partitioning the population generated for the sequential
version. In particular, the model using static topology reached
almost linear speedup (i.e. speedup almost equal to the number
of processors) and retained an accuracy similar to dynamic
model.

III. PARALLEL ISLAND MODEL GAS

Algorithm 2: Generation of the population for each island
Input: Unsigned genome A
Output: Each island with its own initial population

1 p = numberIslands;
2 Island 0 generates n log n signed genomes from A for

itself;
3 for i = 1 to p− 1 do
4 Island 0 generates n log n signed genomes from A

and send them to Island i (MPI_Send);

5 for i = 1 to p− 1 do
6 Island i receives n log n signed genomes from Island

0 (MPI_Recv);

The models with static and dynamic topologies (proposed in
[9], [10]) are adapted for UTD. In these models the breeding
cycle and the migration interval follows as described in Section
II-B. Since island models in which the population in each
island comes from partitioning the population generated for the
sequential GA provided (statistically validated) better results
than island models in which each island generates its own



initial population, the former option to populate islands was
selected. Sections III-A and III-B provide the nomenclature
used in the adopted islands models.

A. Parallel island model GA with Static Topology

For each static topology two Parallel Island Model GAs (for
short, PIMGAs) were proposed, organized as below, where the
subscript 12 and 24 stand for the number of islands in the
model.

PIMGAs where each island has the population generated
according to Algorithm 2:
• GAF12 and GAF24 , for the complete graph topology.
• GAR12 and GAR24 , for the ring topology.
• GATR12 and GATR24 , for the tree topology.
• GATO12 and GATO24 , for the torus topology.
• GAN12 with 4×3-net topology and GAN24 using 6×4-net

topology.

B. Parallel island model GA with Dynamic Topology

The dynamism consists of initially qualify the islands as
being: good, medium and bad as explained in [10], and
from this classification the connections between islands are
generated.

In the same way as for static topologies, the models are
divided into models with 12 and 24 islands. The proposed
algorithms are listed below, where the subscripts 12 and 24
refer to the number of islands in the model.

PIMGAs with population generated according to Algorithm
2:
• GAsame12 and GAsame24 : communication between islands

with same classification: good with good, medium with
medium and bad with bad.

• GAgbmm12 and GAgbmm24 : communication between bad
and good, and medium and medium islands.

• GARand12 and GARand24 : random communication between
islands. Before each migration, connections between is-
lands are generated randomly.

IV. EXPERIMENTS AND RESULTS

The island models were implemented using the MPI library
of the C language. The experiments were executed on a server
with 256GB of RAM with two processors Xeon E5-2620. Each
processor has six cores with hyper-threading enabled.

A. Experiments Setup

The population on each island is composed of signed
genomes created from unsigned genome A provided as input.

The sequential GA has populations of size 24 × (n log n),
where n is the length of the input. On the other hand, parallel
island models have two configurations. For models with 24
islands, each island has n logn individuals, while for those
with 12 islands, 2×(n logn) individuals are allocated for each
island. Thus, all models are performed with total populations
of the same size. Each individual in the population is generated
from the input A, assigning randomly either a positive or
negative signal to each internal gene and a positive signal to

TABLE I
ESTIMATED VALUES FOR THE PARAMETERS

Parameter estimated values
Crossover probability 10%, 12%, · · · , 98%, 100%
Mutation probability 1%, 2%, · · · , 5%

Percentage for selection 10%, 12%, · · · , 98%, 100%
Percentage for replacement 10%, 12%, · · · , 98%, 100%

NumMigIndividuals 1,2,3,4,5,6,7,8,9,10,11,12,13
TypeEmIndividual 1=Better, 2=Worse, 3=Random

EmPolicy 1=Clone, 2=Remove
TypeImIndividual 1=Worse, 2=Random, 3=Similar
MigrationInterval 1%, 2%, · · · , 99%, 100%

the end genes of each chromosome of A. In this way, it is
guaranteed that the generated individuals are co-tails with the
identity (and thus they can be sorted).

Searching for island models that can provide solutions
with good accuracy, a careful parameter definition phase was
performed, where given a set of possible estimated values
(Table I) for each parameter, the models were submitted
to evaluation by testing each referenced value. In the end,
the parameters that provided the best solutions (Table II)
were selected. In the setting phase the used input packages
consisted of one hundred synthetic genomes for genomes of
sizes n ∈ {50, 100, 150}. For each package of one hundred
genomes, the island models were executed ten times and the
average results of the executions (number of translocations)
for each model was computed.

B. Experiments: Performance and Accuracy

Two experiments were performed:
1) Speed-up of the PIMGAs regarding the sequential GAS :

one hundred genomes with 150 genes and 5 chromosomes
were randomly generated. Subsequently, each PIMGA
was executed ten times for each genome in the package
and the average run-time was taken as mean time. The
speedups are presented in Table III.

2) Accuracy of results provided by PIMGAs:
the input data for this experiment consists of packages
of one hundred genomes, generated as mentioned in
previous section, with n genes varying by 10 genes from
n = 100 until n = 150, and m chromosomes, for
m ∈ {3, 4, 5}. The island models were executed ten
times for each genome into each package, and the average
(number of translocations) was taken as result for each
genome. Tables IV, V, VI, VII, VIII, IX, X compare
the island models with 12 and 24 islands presented in
Sections III-A and III-B showing the results, where the
value in each cell represents the average translocation
distance computed for each package of one hundred
genomes and the best results are highlighted. In addition,
Tables XII, XIII, XIV compare only the island models
that provided the best solutions in previous tables (IV, V,
VI, VII, VIII, IX, X) for genomes with the same number
of chromosomes.



TABLE II
PARAMETER SETTINGS FOR THE PIMGAs. 1=GAR12 , 2=GAR24 , 3= GAF24 , 4=GAF12 , 5=GATR12 , 6=GATR24 , 7=GATO12 , 8=GATO24 , 9=GAN12 ,

10=GAN24 , 11=GASAME12 12=GASAME24 , 13=GAGBMM12 , 14=GAGBMM24 , 15=GARAND12 , 16= GARAND24

Parameter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Crossover probability 96% 97% 94% 96% 92% 84% 96% 84% 88% 97% 94% 97% 96% 96% 94% 95%
Mutation probability 1% 1% 1% 1% 1% 1% 1% 1.4% 1% 1% 1% 1% 1% 1.4% 2% 1.1%

Pct. for selection 94% 93% 96% 93% 80% 96% 82% 96% 94% 68% 97% 96% 47% 94% 40% 54%
Pct. for replacement 40% 20% 70% 40% 55% 70% 32% 70% 40% 30% 30% 72% 34% 50% 30% 56%
NumMigIndividuals 9 2 5 4 8 6 8 7 3 5 9 7 6 5 3 5
TypeEmIndividual 3 2 1 1 1 1 1 1 1 1 3 1 3 1 1 1

EmPolicy 1 2 2 1 2 1 2 1 2 1 2 1 1 1 2 2
TypeImIndividual 1 2 1 2 1 2 1 2 2 1 3 3 2 3 1 1
MigrationInterval 10% 60% 30% 10% 90% 55% 42% 55% 32% 30% 10% 34% 40% 10% 10% 11%

TABLE III
SPEED-UP FOR THE EXPERIMENT WITH GENOMES OF LENGTH 150. 1=GAR12 , 2=GAR24 , 3= GAF24 , 4=GAF12 , 5=GATR12 , 6=GATR24 , 7=GATO12 ,

8=GATO24 , 9=GAN12 , 10=GAN24 , 11=GASAME12 12=GASAME24 , 13=GAGBMM12 , 14=GAGBMM24 , 15=GARAND12 , 16= GARAND24
Length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

150 7.9 14.35 8.01 14.33 16.88 8.75 16.25 8.71 15.16 10.45 22.75 14.10 14.01 8.12 22.81 15.96

TABLE IV
EXPERIMENTS WITH HUNDRED GENOMES WITH 3,4 AND 5

CHROMOSOMES. 1=GASAME24 , GASAME12

3 chrom. 4 chrom. 5 chrom.
n 1 2 1 2 1 2

100 63.43 63.4 77.86 61.15 75.03 57.68
110 89.26 70.94 86.73 67.76 84.36 64.69
120 98.4 78.08 96.03 74.9 93.46 71.89
130 107.85 85.87 104.73 81.18 102.27 77.96
140 117.15 93.09 113.85 88.28 111.4 84.81
150 126.57 100.69 122.91 95.23 119.97 91.05

TABLE V
EXPERIMENTS WITH HUNDRED GENOMES WITH 3,4 AND 5

CHROMOSOMES. 1=GAGBMM24 , 2=GAGBMM12

3 chrom. 4 chrom. 5 chrom.
n 1 2 1 2 1 2

100 63.26 63.39 61.07 61.15 57.62 57.67
110 70.76 70.93 67.58 67.71 64.57 64.65
120 77.84 78.03 74.71 74.86 71.75 71.88
130 85.57 85.8 80.95 81.15 77.81 77.95
140 92.8 93.06 88.01 88.22 84.61 84.8
150 100.4 100.67 94.97 95.19 90.8 91.01

TABLE VI
EXPERIMENT WITH HUNDRED GENOMES WITH 3,4 AND 5 CHROMOSOMES.

1=GARAND24 , 2=GARAND12

3 chrom. 4 chrom. 5 chrom.
n 1 2 1 2 1 2

100 63.41 63.57 61.16 61.24 57.66 57.76
110 71.0 71.18 67.74 67.9 64.67 64.78
120 78.13 78.39 74.94 75.14 71.88 72.03
130 85.91 86.19 81.2 81.45 77.95 78.23
140 93.2 93.47 88.36 88.61 84.83 85.04
150 100.85 101.2 95.28 95.57 91.1 91.25

V. DISCUSSION

According to the experiments to calculate the speedup with
respect to the sequential GA, GAS , given in Table III, the better
performances were obtained by the models using 12 islands:
GARand24 , GAsame24 , GATR24 , and GATO24 , with GARand24 al-
most reaching linear speedup (22.81). In contrast, these models

TABLE VII
EXPERIMENT WITH HUNDRED GENOMES WITH 3,4 AND 5 CHROMOSOMES.

1=GAN24 , 2=GAN12

3 chrom. 4 chrom. 5 chrom.
n 1 2 1 2 1 2

100 63.32 63.41 61.1 61.16 57.65 57.69
110 70.84 70.95 67.65 67.71 64.61 64.64
120 77.97 78.06 74.82 74.86 71.83 71.88
130 85.71 85.84 81.05 81.14 77.91 77.94
140 92.95 93.07 88.13 88.24 84.7 84.78
150 100.55 100.73 95.07 95.21 90.88 90.99

TABLE VIII
EXPERIMENT WITH HUNDRED GENOMES WITH 3,4 AND 5 CHROMOSOMES.

1=GAR24 AND GAR12

3 chrom. 4 chrom. 5 chrom.
n 1 2 1 2 1 2

100 63.27 63.41 61.09 61.14 57.63 57.67
110 70.82 70.94 67.59 67.73 64.56 64.65
120 77.88 78.08 74.76 74.88 71.78 71.92
130 85.66 85.85 81.02 81.14 77.83 77.94
140 92.87 93.1 88.08 88.25 84.67 84.77
150 100.46 100.67 95.03 95.2 90.85 90.99

TABLE IX
EXPERIMENT WITH HUNDRED GENOMES WITH 3,4 AND 5 CHROMOSOMES.

1=GATR24 , 2=GATR12

3 chrom. 4 chrom. 5 chrom.
n 1 2 1 2 1 2

100 63.31 63.44 61.1 61.19 57.63 57.72
110 70.85 71.01 67.63 67.76 64.61 64.69
120 77.95 78.14 74.74 74.97 71.8 71.93
130 85.72 85.92 81.03 81.22 77.85 78.03
140 92.91 93.21 88.1 88.35 84.69 84.89
150 100.52 100.84 95.05 95.29 90.9 91.13

provided the worst solutions regarding accuracy, in general.
For the models that provided the best quality solutions, which
are those with 24 islands, the speedups are much smaller,
but competitive. This is explained since for models we have
extra overhead cost for creating and destroying 12 additional
processes.



TABLE X
EXPERIMENT WITH HUNDRED GENOMES WITH 3,4 AND 5 CHROMOSOMES.

1=GAF24 , 2=GAF12

3 chrom. 4 chrom. 5 chrom.
n 1 2 1 2 1 2

100 63.31 63.41 61.1 61.17 57.62 57.66
110 70.83 70.96 67.62 67.71 64.59 64.66
120 77.94 78.09 74.71 74.9 71.8 71.84
130 85.71 85.86 81.0 81.14 77.86 78.01
140 92.91 93.11 88.06 88.29 84.68 84.74
150 100.53 100.75 95.01 95.2 90.84 90.99

TABLE XI
EXPERIMENT WITH HUNDRED GENOMES WITH 3,4 AND 5 CHROMOSOMES.

1=GATO24 , 2=GATO12

3 chrom. 4 chrom. 5 chrom.
n 1 2 1 2 1 2

100 63.28 63.4 61.1 61.17 57.63 57.69
110 70.8 70.96 67.61 67.73 64.61 64.66
120 77.91 78.06 74.75 74.91 71.8 71.92
130 85.66 85.82 81.02 81.18 77.85 77.98
140 92.85 93.06 88.11 88.28 84.69 84.83
150 100.48 100.7 95.07 95.26 90.88 91.03

Analyzing Tables V to XI, it can be seen that models using
24 island provide better solutions on average than those using
12 island. The exception occurs in Table IV where the dynamic
model GAsame12 computes better results. Experiments in Tables
XII, XIII and XIV, comparing the results for the better models
were performed. From these experiments it can be observed
that all models provided better solutions than the sequential
version GAS . The dynamic model GAgbmm24 provided on av-
erage the best solutions for all inputs and the worst solutions
were obtained with the dynamic model GAsame12 .

To validate the results in Tables XII, XIII and XIV, a
statistical analysis (according to the methodology in [24])
was performed over the multiplicative inverse of the results
computed for 100 genomes with lengths varying from 100
until 150 for 3,4 and 5 chromosomes. The statistical anal-
ysis consists in first applying the Friedman test; if the null
hypothesis (h0: all algorithms have the same performance) is
rejected then a post-hoc test is performed, which in this case
is the Holm Test. The Holm test allows one to test the null
hypothesis that a control algorithm has the same performance
with respect to another algorithm. For both tests, a significance
level of α = 0, 05 was used. Tables XV, XVI, XVII show the
results from the statistical analysis, where we can see that
GAgbmm24 is chosen as the control algorithm since it provided
better accuracy when compared to the other models used.

VI. CONCLUSIONS AND FUTURE WORK

Parallel homogeneous island GAs proposed in [9], [10] were
applied to solve the unsigned translocation distance problem
concluding how these models perform regarding accuracy and
speedup. As for reversal distance problem, the algorithms
outperformed the sequential GA.

The choice of UTD and URD problems that involve evolu-
tionary scenarios, initially left the hypothesis that the proposed

island models could provide similar behavior. However, from
the parameter calibration phase, it was noticed that the settings
were not the same for parameters as migration and breeding
cycle. From experiments, it became even clearer that accuracy
and performance had different behavior. If one considers
GAN12 and GARand12 which provided the best accuracy for
URD, when applied to UTD they obtained low and medium
quality solutions, respectively. Considering performance, the
speedup of GARand12 for URD was reasonable, while in this
work for UTD it reached almost linear speedup , already for
GAN12 the speedup was similar to the performance achieved
with URD problem.

Regarding number of islands in the model, the best results
for URD were provided using 12 islands, while for UTD using
24 islands, providing the model GAgbmm24 solutions in average
with the best quality. Thus, the hypothesis that the models
might provide similar results was refuted concluding that the
behavior of island models vary a lot from one problem to
another.

As future work, it will be of interest considering problems
out of the evolutionary scenario.
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TABLE XV
RESULTS OF THE HOLM TEST FOR ONE HUNDRED GENOMES WITH 3

CHROMOSOMES

L Control i Algorithm Rank P-value α/i
Algorithm

100

8 GAsame12 6.47 5.94337E-12 0.00625
7 GARand24 6.27 1.79987E-10 0.00714

GAgbmm24 6 GAS 5.64 2.15891E-6 0.00833
(Rank: 5 GAN24 4.92 0.00399 0.01
3.80) 4 GATO24 4.77 0.01226 0.0125

3 GATR24 4.76 0.01367 0.01667
2 GAR24 4.18 0.33292 0.025
1 GAF24 4.17 0.33941 0.05

110

8 GARand24 6.79 1.43137E-19 0.00625
7 GAS 6.66 3.28096E-18 0.00714

GAgbmm24 6 GAsame12 6.17 9.40233E-14 0.00833
(Rank: 5 GAN24 4.75 1.63441E-4 0.01
3.29) 4 GATR24 4.72 2.11262E-4 0.0125

3 GATO24 4.45 0.00263 0.01667
2 GAR24 4.24 0.01367 0.025
1 GAF24 3.90 0.11230 0.05

120

8 GAS 7.35 2.16998E-28 0.00625
7 GARand24 6.72 5.53782E-21 0.00714

GAgbmm24 6 GAsame12 6.30 1.03157E-16 0.00833
(Rank: 5 GAN24 4.91 2.15891E-6 0.01
3.08) 4 GATR24 4.56 1.25946E-4 0.0125

3 GATO24 4.47 3.31994E-4 0.01667
2 GAF24 3.95 0.02387 0.025
1 GAR24 3.64 0.14820 0.05

130

8 GAS 7.96 6.16427E-43 0.00625
7 GARand24 6.91 3.33817E-28 0.00714

GAgbmm24 6 GAsame12 6.39 4.06166E-22 0.00833
(Rank: 5 GATR24 4.57 5.84866E-7 0.01
2.64) 4 GAN24 4.55 7.63361E-7 0.0125

3 GATO24 4.42 4.04902E-6 0.01667
2 GAF24 3.80 0.00263 0.025
1 GAR24 3.75 0.00416 0.05

140

8 GAS 8.69 1.73314E-52 0.00625
7 GARand24 7.15 2.46317E-29 0.00714

GAgbmm24 6 GAsame12 6.17 2.61234E-18 0.00833
(Rank: 5 GAN24 4.68 9.93766E-7 0.01
2.79) 4 GATR24 4.25 1.55190E-4 0.0125

3 GATO24 4.12 5.66943E-4 0.01667
2 GAR24 3.64 0.02727 0.025
1 GAF24 3.48 0.07070 0.05

150

8 GAS 8.8 3.93283E-54 0.00625
7 GARand24 7.29 2.09678E-31 0.00714

GAgbmm24 6 GAsame12 5.99 1.03157E-16 0.00833
(Rank: 5 GAN24 4.52 6.22850E-6 0.01
2.78) 4 GATO24 4.39 3.04717E-5 0.0125

3 GATR24 4.11 5.40446E-4 0.01667
2 GAF24 3.64 0.02468 0.025
1 GAR24 3.49 0.06302 0.05

TABLE XVI
RESULTS OF THE HOLM TEST FOR ONE HUNDRED GENOMES WITH 4

CHROMOSOMES

L Control i Algorithm Rank P-value α/i
Algorithm

100

8 GARand24 5.69 0.00163 0.00625
7 GAS 5.46 0.01019 0.00714

GAgbmm24 6 sameA 5.40 0.01634 0.00833
(Rank: 5 fullB 4.87& 0.29570 0.01
4.47) 4 GATO24 4.85 0.32652 0.0125

3 GATR24 4.83 0.34597 0.01667
2 GAN24 4.80 0.39418 0.025
1 GAR24 4.61 0.70812 0.05

110

8 GAsame12 6.23 3.53679E-8 0.00625
7 GARand24 6.14 1.38477E-7 0.00714

GAgbmm24 6 GAS 5.89 3.57507E-6 0.00833
(Rank: 5 GAN24 4.89 0.04013 0.01
4.10) 4 GATR24 4.65 0.15186 0.0125

3 GATO24 4.48 0.32019 0.01667
2 GAF24 4.37 0.47768 0.025
1 GAR24 4.23 0.75668 0.05

120

8 GAS 6.64 4.00510E-13 0.00625
7 GARand24 6.56 2.17139E-12 0.00714

GAgbmm24 6 GAsame12 6.04 1.24618E-8 0.00833
(Rank: 5 GAN24 5.04 0.00195 0.01
3.83) 4 GAR24 4.47 0.09844 0.0125

3 GATO24 4.26 0.26689 0.01667
2 GATR24 4.20 0.33941 0.025
1 GAF24 3.94 0.77640 0.05

130

8 GAS 7.21 4.33151E-21 0.00625
7 GARand24 6.33 8.54545E-13 0.00714

GAgbmm24 6 GAsame12 5.94 7.98963E-10 0.00833
(Rank: 5 GAN24 4.75 0.00212 0.01
3.56) 4 GAR24 4.40 0.03009 0.0125

3 GATR24 4.395 0.03109 0.01667
2 GATO24 4.33 0.04539 0.025
1 GAF24 4.08 0.17939 0.05

140

8 GAS 8.08 7.76914E-36 0.00625
7 GARand24 6.61 3.67603E-18 0.00714

GAgbmm24 6 GAsame12 6.02 8.54545E-13 0.00833
(Rank: 5 GAN24 4.61 4.04202E-4 0.01
3.24) 4 GATO24 4.31 0.00596 0.0125

3 GATR24 4.23 0.01098 0.01667
2 GAR24 4.04 0.04010 0.025
1 GAF24 3.85 0.11826 0.05

150

8 GAS 8.37 5.52994E-38 0.00625
7 GARand24 6.18 4.84530E-13 0.00714

GAgbmm24 6 GAsame12 5.91 7.05318E-11 0.00833
(Rank: 5 GATO24 4.48 0.00433 0.01
3.38) 4 GAN24 4.40 0.00845 0.0125

3 GATR24 4.31 0.01634 0.01667
2 GAR24 4.06 0.07695 0.025
1 GAF24 3.90 0.17524 0.05



TABLE XVII
RESULTS OF THE HOLM TEST FOR ONE HUNDRED GENOMES WITH 5

CHROMOSOMES

L Control i Algorithm Rank P-value α/i
Algorithm

110

8 GAsame12 5.79 1.81197E-4 0.00625
7 GAS 5.76 2.45966E-4 0.00714

GAR24 6 GARand24 5.39 0.00671 0.00833
(Rank: 5 GAN24 4.88 0.16323 0.01
4.34) 4 GATR24 4.86 0.18361 0.0125

3 GATO24 4.82 0.21521 0.01667
2 GAF24 4.67 0.40139 0.025
1 GAgbmm24 4.46 0.76652 0.05

120

8 GAS 6.80 1.24334E-12 0.00625
7 GAsame12 5.52 1.39850E-4 0.00714

GAgbmm24 6 GARand24 5.50 1.72104E-4 0.00833
(Rank: 5 GAN24 4.98 0.01577 0.01
4.05) 4 GAF24 4.63 0.13093 0.0125

3 GATR24 4.55 0.19671 0.01667
2 GATO24 4.54 0.20581 0.025
1 GAR24 4.41 0.35262 0.05

130

8 GAS 6.31 9.92443E-9 0.00625
7 GAsame12 5.63 7.00067E-5 0.00714

GAgbmm24 6 GARand24 5.48 3.15931E-4 0.00833
(Rank: 5 GAN24 5.20 0.00416 0.01
4.09) 4 GAF24 4.73 0.09844 0.0125

3 GATR24 4.59 0.19227 0.01667
2 GATO24 4.57 0.21521 0.025
1 GAR24 4.39 0.43858 0.05

140

8 GAS 7.07 1.01524E-17 0.00625
7 GARand24 5.86 4.73709E-8 0.00714

GAgbmm24 6 GAsame12 5.73 3.18196E-7 0.00833
(Rank: 5 GAN24 4.64 0.02084 0.01
3.75) 4 GATO24 4.50 0.03887 0.0125

3 GATR24 4.50 0.05281 0.01667
2 GAF24 4.48 0.05773 0.025
1 GAR24 4.40 0.09080 0.05

150

8 GAS 7.97 9.46922E-31 0.00625
7 GARand24 6.33 3.30842E-13 0.00714

GAgbmm24 6 GAsame12 5.81 2.87511E-9 0.00833
(Rank: 5 GATR24 4.54 0.00783 0.01
3.51) 4 GATO24 4.38 0.02468 0.0125

3 GAN24 4.32 0.03649 0.01667
2 GAR24 4.11 0.11826 0.025
1 GAF24 4.02 0.18790 0.05


