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Abstract—Sorting unsigned permutations by reversals is an
NP-hard optimization problem with applications in compu-
tational molecular biology. Several approximation and meta-
heuristic algorithms were proposed, among them, in a previous
work, a competitive genetic algorithm and its parallel version
using island models were proposed. In this paper, focusing
on improving accuracy, new island models are proposed by
diversifying the distribution of genetic material between islands
through static and dynamic communication topologies. In static
topologies, communication between islands is predefined and
maintained during the computation, while in dynamic topologies
the communication is continuously modified.

The proposed island models use parallelism in a global and
a local level, in which respectively occurs the exchange of
individuals between islands and the fitness computation.

Results from the experiments performed with randomly gen-
erated synthetic permutations show that parallel island models
using both dynamic and static communication topologies out-
perform parallel approaches found in the literature in terms of
speed-up as well as accuracy.

I. INTRODUCTION

Computing the evolutionary distance between organisms
through the comparison of their genomes has become pos-
sible as consequence of the development of computational
molecular biology and modern genetics in the last decades.
Such evolution among organisms proceed in two different
manners: as local mutations and as global rearrangements.
In the former case, nucleotide substitutions, deletions and
insertions, result in local changes in the DNA sequence. In
the latter case, segments (genes) of the chromosome are rear-
ranged using some evolutionary operation. The most common
genome rearrangement operations are: reversals, transloca-
tions, fusions, and block exchanges. In this work, we will
consider reversals for calculating the evolutionary distance
between organisms containing a single chromosome. In the
literature, computing the minimum number of reversals for
transforming one genome into another is known as the reversal
distance problem. The complexity of this problem may vary
depending on how the genes are abstracted into the genome.
If the orientation of the genes is considered, the problem is
known as the signed reversal distance problem (for short, SRD)
and belongs to the class P; otherwise, if the orientation of the
genes is not considered, the problem is known as the unsigned
reversal distance problem (for short, URD) and is known to
be NP-hard.

For the case of SRD, Hannenhalli and Pevzner [1] proposed
a quadratic run-time algorithm to compute the reversal dis-
tance. Berman and Hannenhalli [2] improved this complexity
obtaining an O(nα(n)) algorithm, where n is the length of the
input genome and α(n) is the inverse of Ackerman’s function,
and finally, Bader et al. [3] proposed a linear time algorithm.

Regarding the URD problem, Caprara [4] proved its NP-
hardness. Before Caprara’s proof, Kececioglu and Sankoff [5]
proposed an approximation algorithm of ratio 2.0 further im-
proved by Bafna and Pevzner [6] to ratio 1.75. Subsequently,
Christie [7] improved the ratio to 1.5, and finally, Berman et
al. [8] proposed a solution with approximation ratio of 1.375.
The last algorithm involves a complex theoretical background,
and so far no implementation is known. The first Genetic
Algorithm (GA) for solving URD was proposed by Auyeung
and Abraham [9]; their method uses a population of size
n2 with time complexity in O(n5). Subsequently, a GA was
proposed by Garrarizadeh et al. [10] which uses a population
of size n log(n) with complexity of O(n4 log2(n)). After that,
in [11], Soncco-Álvarez and Ayala-Rincón proposed a simple
GA approach with complexity O(n3 log n) which was compet-
itive and that with further adjusts became what here is called
the standard (sequential) GA (GAS) [12], and provided better
results than those computed by the approximation algorithm
of ratio 1.5. Subsequently, parallel GAs came into play. In this
new scenario, solutions deal with small populations running
independently as proposed in [13], as well as performing the
exchange of individuals among the populations involved at
fixed intervals, as proposed in [14].

The main contributions of this work are new island models
to solve the URD problem. These models explore static and
dynamic communication topologies focusing on their influence
in performance and accuracy. In [14], the authors proposed
island models with static communication topologies for which
an unidirectional ring topology provided the better known
results. In this work, we are proposing new island models
with static communication over topologies such as torus, 4×3-
graph and tree. Also, dynamic communication topologies are
proposed. In static topologies, communication between islands
is predefined and maintained during the computation, while
in dynamic topologies the communication is continuously
modified. In this manner, the former models establish a rigid
migration policy, while the latter ones a variable migration pro-
cess which changes generation after generation. In the dynamic



models, each island is qualified according to fitness and diver-
sity of its population, and then, at running time, interactions
between islands are established before the migration phase
occurs. In the search for a better performance, improvements
on the proposed models were done through parallelism in
two levels. In the first level, for the communication between
islands, and in the second one, inside each island, for the
parallel computation of the fitness function of individuals.
From the experiments and statistical validation, it is possible
to observe both performance and accuracy gains in solutions
provided by the new parallel island models, especially those
that use 4×3-graph topology and dynamic topology, when
compared with the island model that uses the unidirectional
ring topology proposed in [14].

Section II presents the necessary notions and properties
involved in the reversal distance problem; Section III describes
the evolutionary engine responsible for the breeding cycle in
the proposed island models and presents the island models
found in literature to solve URD; Section IV presents the
proposed island models to resolve URD; Experiments and
results are given in Section V; Section VI discusses the
experiments and presents statistical tests to validate the results;
Finally, Section VII concludes and discusses future work. For
the benefit of the reviewing process, the source code of our
proposed island models and data used for experiments are
available at genoma.cic.unb.br.

II. BACKGROUND

A. Definitions and Terminology

A genome can be represented as a special finite sequence of
integers whose different elements are the different genes of the
genome; namely, a uni-chromosomal genome of length n ∈ N,
is represented by π = π(1) . . . π(n), where |π(i)| 6= |π(j)|, if
i 6= j. As discussed in the Introduction, there are two situations
of interest: URD and SRD, to be formalized below.

Situation 1 (URD): π(i) ∈ [n] := {1, . . . , n}, 1 ≤ i ≤ n. In
this case, notice that π can be seen as the bijective function

π : [n] → [n] such that i 7→ π(i)

where π(i) represents the element at ith position of the
sequence π; indeed, π is a permutation over the set [n], which
implies that π is an element of the well-known symmetric
group Sn with composition as operator function. In Sn, the
inverse of a permutation π is a permutation, denoted as π−1,
such that for all i, j ∈ [n], π(i) = j iff π−1(j) = i. Denote
by idn the the identity permutation on Sn: idn(i) = i, for
all i ∈ [n]; thus, ππ−1 = π−1π = idn. In the following,
for simplicity, we will suppress the subscript n of idn. A
permutation π over [n] is called an unsigned permutation of
length n. The reversal ρ(i,j), 1 ≤ i ≤ j ≤ n, applied over an
unsigned permutation π, reverses the elements from π(i) to
π(j) into the permutation π, that is,

πρ(i,j) = π(1) . . . π(i− 1) π(j) . . . π(i) π(j + 1) . . . π(n)

Thus, reversals are also permutations in Sn; indeed, ρ(i,j) is
the permutation such that ρ(i,j)(k) = k, for 1 ≤ k < i or j <

k ≤ n, and ρ(i,j)(k) = (j + i)− k, for i ≤ k ≤ j. Given two
permutations π and σ over [n], the reversal distance between
π and σ is defined as the minimum number of reversals needed
to transform π into σ. Notice that d is the reversal distance
between π and σ iff d is the reversal distance between σ−1π
and id. In fact, if ρ1, . . . , ρd are reversals (even, permutations),
we have that πρ1 · · · ρd = σ iff σ−1πρ1 · · · ρd = σ−1σ = id.

From the previous observation, it makes sense to define the
URD problem as follows: given an unsigned permutation π,
find the reversal distance between π and id; such number
is denoted by d(π). For example, considering the 5-length
permutation π = 4 2 1 5 3, d(π) = 3 and a minimal sequence
of reversals that transform π into id is illustrated in Figure 1.

π = 4 2 1 5 3 πρ(1,3)ρ(3,5) = 1 2 3 5 4
πρ(1,3) = 1 2 4 5 3 πρ(1,3)ρ(3,5)ρ(4,5) = 1 2 3 4 5

Fig. 1. Sequence of reversals that sort the permutation π = 4 2 1 5 3

Since id is sorted, it will also be said that transforming π
by reversals into id is “sorting π by reversals”.
Situation 2 (SRD): π(i) ∈ [±n] := {±1, . . . ,±n}, 1 ≤ i ≤ n.
In this case, π is called a signed permutation of length n.

The action of a reversal ρ(i,j), 1 ≤ i ≤ j ≤ n, over a signed
permutation π not only reverses the elements from π(i) to
π(j), but also switches their signs:

πρ(i,j) = π(1) . . . π(i−1) −π(j) . . .− π(i) π(j+1) . . . π(n)

The reversal distance between signed permutations on [±n]
is defined as for URD, as the minimum number of reversals
necessary to transform one permutation into the other. Denote
by id+ the signed permutation such that id+(i) = +i, 1 ≤ i ≤
n. Given a signed permutation π, the Signed Reversal Distance
Problem consists in finding the reversal distance between π
and id+. For each signed permutation π over [±n] one can
associate an unsigned permutation π′ = π′(1) . . . π′(2n) over
[2n] as follows: if π(i) ∈ Z+ then π′(2i−1) := 2π(i)−1 and
π′(2i) := 2π(i); otherwise, if π(i) ∈ Z− then π′(2i − 1) :=
−2π(i) and π′(2i) := −2π(i)−1. By this correspondence, the
set of all signed permutations can be seen as a subgroup of the
symmetric group S2n (see [15]), where the allowable reversals
on π′ have the form ρ(2i−1,2j), 1 ≤ i ≤ j ≤ n. The example
in Figure 2 illustrates this transformation and how reversals on
the unsigned permutation are mimicked on its transformation.

π = −2 + 3 + 4 − 1
πρ1 = −4 − 3 + 2 − 1
πρ2 = +1 −2 + 3 + 4
πρ3 = +1 + 2 + 3 + 4

 

π′ = 4 3 5 6 7 8 2 1
π′ρ′1 = 8 7 6 5 3 4 2 1
π′ρ′2 = 1 2 4 3 5 6 7 8
π′ρ′3 = 1 2 3 4 5 6 7 8

Fig. 2. Sorting by reversals, π = −2 + 3 + 4 − 1 and its unsigned
transformation π′. The reversals ρ1 = ρ(1,3), ρ2 = ρ(1,4) and ρ3 = ρ(2,2)
are mimicked by ρ′1 = ρ(1,6), ρ′2 = ρ(1,8) and ρ′3 = ρ(3,4), respectively.

An important data structure to solve reversal distance prob-
lems is the breakpoint graph. Consider a permutation π over
[n]. Add to π the pivots π(0) = 0 and π(n + 1) = n + 1.



For 0 ≤ i ≤ n, if |π(i) − π(i + 1)| = 1 then the
unsorted pair {π(i), π(i + 1)} is called an adjacency, oth-
erwise, {π(i), π(i+1)} is called a breakpoint. The breakpoint
graph G(π) of π is a bi-colored graph such that: the set of
vertices is {π(0), π(1), . . . , π(n), π(n + 1)}, there is a black
edge between π(i) and π(i + 1) iff {π(i), π(i + 1)} is a
breakpoint and, a gray edge between π(i) and π(i) + 1 iff
{i, π−1(π(i) + 1)} is not an adjacency, for 0 ≤ i ≤ n.
Denote by b(π) the number of breakpoints of π (or the number
of black edges of G(π)) and c(π) the maximum number of
alternating cycles in G(π), where alternating paths have edges
with alternating (black-gray) colors (See example in Figure 3).

0 12 34 5 60 12 34 5 6

0 14 50 14 5

2 34 5 62 34 5 6

Fig. 3. Breakpoint graph for π = 4 2 1 5 3 (on the left) and a maximum
decomposition into 2 alternating cycles (graphs on the right). Notice that
b(π) = 5 and c(π) = 2

Bafna and Pevzner [6] showed that for unsigned per-
mutations b(π) − c(π) ≤ d(π). Caprara [16] proved that
the probability that b(π) − c(π) is not equal to d(π) is
asymptotically Θ( 1

n5 ) for a random unsigned permutation over
[n] and Θ( 1

n2 ) for a random signed permutation over [±n].
Notice that for an unsigned permutation π that is image of
a signed permutation, it is easy to calculate c(π) because
each vertex of G(π) has degree at most two; however, for
arbitrary unsigned permutations, determining such number is
a difficult task. The previous are key observations to prove
that SRD belongs to P , [17], whereas URD is an NP-
hard problem [4]. Thus, algorithms that provide approximated
solutions for URD are of great interest. Some papers in the
literature present heuristics that use exact solutions of SRD in
order to build approximated solutions for URD ([9], [12], [18],
[19]). The parallel GAs proposed in the current work can be
classified in this category. Indeed, our parallel GAs intensively
apply the genetic algorithm GAS given in [12]. Basically, the
initial steps of GAS ([12]) consist in given an input unsigned
permutation π over [n], associate to π, n log n randomly signed
versions of π that are permutations over [±n] and then, evolve
the population by evolutionary improvements on the fitness
function, which is obtained through application of the exact
linear algorithm proposed in [3] (Step 2 in Algorithm 1).
The population of signed permutations is ranked according
to their fitness and GAS continues (Algorithm 1). The theory
of breakpoint graphs is crucial in order to built exact solutions
for SRD. In fact, based on a thorough analysis over alternating
cycles of breakpoint graphs, Hannenhalli and Pevzner showed
that

d(π) =

{
b(π)− c(π) + h(π) + 1 or
b(π)− c(π) + h(π)

where π is an unsigned permutation resulting from the trans-
formation of a signed permutation and, h(π) denotes the
number of hurdles of π, a parameter related to the connected
components of a special graph built from the breakpoint graph
of π. Furthermore, d(π) = b(π) − c(π) + h(π) + 1 only for
fortresses, a class of permutations classified as “hard to sort”
and characterized in [17]. The linear algorithm proposed in [3]
is built from the analysis of the overlap graph, a graph where
the vertices are alternating cycles and the edges are defined
from the concept of interleaved cycles of the breakpoint graph.
Thus, breakpoint graphs are far too related with computation
of fitness in our parallel GA.

Other approaches to build algorithms to solve URD are
based on applying prioritarily reversals that reduce the max-
imum number of breakpoints. Notice that, if one apply a
reversal ρ on a permutation π, then |b(πρ)− b(π)| ≤ 2, that is
the number of breakpoints decreases or increases at most by
two. By the relation between b(π)− c(π) and d(π), reversals
that increase c(π) or that decrease b(π) by two are prioritized,
expecting that this local optimization approach leads to a
global optimization ([5], [6], [20]).

B. Genetic Algorithm for URD

The algorithm GAS given in [12], is the standard GA used
in our parallel approach. The input of GAS is an unsigned
permutation π of length n and its output a number of reversals
to sort π. Initially, a population of n log n individuals that are
signed permutations generated from π by randomly assigning
signs to each element of π is generated. The exact solutions
of these individuals are feasible solutions for π. The fitness of
each one of these individuals is computed through application
of the linear algorithm for solving SRD proposed in [3].

The genetic operators used in GAS are: selection that consid-
ers a percentage of the best individuals in the population; and,
crossover that uses a single-point cut mechanism. As policy of
insertion of the offspring, the candidates for leaving the current
population are those with the worst fitness values. To improve
the population quality, in each generation two best current
individuals are selected for which crossover and mutation
operations are applied generating two new descendants. If
the new offspring are better than those individuals in the
population, they are incorporated in the current population.
The GAS finishes after n generations are completed.

The pseudo-code of GASis shown in Algorithm 1.

C. Parallel Island Models GA

Island models are an efficient way of implementing bio-
inspired algorithms in parallel where an island is usually rep-
resented by a processor. In this work we are considering only
GAs. In this model, each island runs an instance of the GA
maintaining its own population and evolving independently
and, periodically, a portion of its population is interchanged
in a process called migration. This process involves a set of
parameters that impact both the performance and accuracy in
multi-island algorithms [21]. By default, the target island is the



Algorithm 1: GA for solving URD
Input: Unsigned permutation π
Output: Approximation of the minimum number of

reversals that transform π in id.
1 Generate the initial population of signed permutations;
2 Compute fitness of the initial population;
3 for i = 1 to Length(π) do
4 Perform selection and save the best solution found;
5 Apply the crossover operator;
6 Apply the mutation operator;
7 Compute the fitness of the current population;
8 Perform replacement of the worst individuals;

one that will receive individuals from a local island. Below we
highlight the required parameters.
• NumMigIndividuals: amount of individuals that will be

sent and received from one island to another.
• TypeEmIndividual: type of individuals selected for emi-

gration, which will be sent to the target island. The types
of individuals are three: 1) better; 2) worse; 3) random.

• EmPolicy: type of emigration policy in the local island,
that is whether the emigrating individuals are clones or
they are indeed removed from the source and sent to the
target island: 1) clone individuals; 2) remove individuals.

• TypeImIndividual: type of immigration policy to select
the type of individuals to be replaced by immigrants to
the target island. Possible types are: 1) worse; 2) random;
and 3) similar individuals (i.e., same fitness).

• MigrationInterval: generation migration interval when
islands exchange individuals.

• Topology: graph connectivity model that specifies which
pairs of islands will communicate.

In [22], Cantú-Paz reported that Parallel island models
have the capacity to provide better results than algorithms
containing a single large population, both in performance and
accuracy. The reason for the improvement in performance
is linked to parameters as MigrationInterval and Topology
as discussed by Lässig and Sudholt in [23]. For explaining
the improvement in accuracy, they argue that the different
islands can explore different points in the search space of
possible populations, which is not possible to be performed
by models containing a single population. In addition to the
usual requirements of sequential GAs, parallel GAs require a
careful investigation into the impact of parameter setting and
specific needs are to be considered for each different problem,
as pointed out by Leitão et al. in [24].

D. Communication Topologies in the Island Models

The topology is an important factor in the performance
of parallel multi-island GAs since it determines how slow
or fast a good solution disseminates to other islands. If the
topology has dense connectivity, good solutions will quickly
spread to all islands and can quickly take over the population,
classic models use complete graph, 4-D Hipercube and 4× 4

Toroidal mesh [22]. On the other hand, if the topology is
sparse, the solutions will spread more slowly allowing the
emergence of different solutions; consequently, these solutions
may subsequently form potentially better individuals. Ring
topologies have been successful in various works (e.g., [25],
[26], [27], [28], [14]). In addition, the topology also has an
impact on the cost (run-time) of migration. Densely connected
topologies can promote a better mix of individuals, but also
entail higher communication costs, as well as have a high
probability of reaching premature convergence.

Another important factor to be considered when choosing a
topology is whether the islands will be organized statically or
dynamically. Static topologies are specified at the beginning
of execution and remain unchanged. In the dynamic case,
communication to be done between islands is not fixed, but is
determined by some criterion. The motivation behind dynamic
topologies is to identify situations where migrants are likely
to have some effect. The criteria used to choose an island as
destination include measures of population diversity [29], a
measure of the genotypic distance between the islands [30] or
attractiveness factor between islands [31].

III. PARALLEL ISLAND MODELS FOR URD

Before presenting the new parallel island models, a quick
description of the approach proposed in [14] would be given.
The operation of the new models proposed here are based
on the same background, since the new algorithms differ
essentially in the communication topology. In [14] two models,
called GARNP and GARP, were proposed that are based on the
unidirectional ring communication topology and other two
models, called GACNP and GACP, that are based on the complete
graph topology. For all models, each process represents an
island running an instance of GAS with a different population
of size n log n. The breeding cycle is homogeneous with
equal parameter set on all islands. The interval between one
migration phase and another is defined as a percentage of
the total number of generations in the breeding cycle. In a
migration phase, each island selects an amount of individuals
(parameter NumMigIndividuals) of a given type, as defined in
parameter TypeEmIndividual, which can be cloned or removed
(parameter EmPolicy), to be sent to their respective neighbor
(target island). The target island inserts the immigrants into
its population by replacing its own individuals according to
the configuration of parameter TypeImIndividual. The output
of all models are the best result among all islands.

The models GACNP and GARNP differ from GACP and GARP

in the way in which the population is generated. For GACNP

and GARNP, each island generates its own population con-
sisting of n log n individuals from the input permutation by
randomly assigning a (negative or positive) sign to each
of its genes. For GACP and GARP, the whole population is
generated and partitioned into sub-populations of equal size
to be allocated on each island. Subscripts “NP” and “P” are
used to discriminate between models with non partitioned and
partitioned initial populations. Algorithm 2 describes how the
initial population is generated by Island 0, which constructs a



Algorithm 2: Generation of the population for each island
Input: Unsigned permutation π
Output: Each island with its own initial population

1 p = numberIslands;
2 Island 0 generates n log n signed permutations from π

for itself;
3 for i = 1 to p− 1 do
4 Island 0 generates n log n signed permutations from

π and send them to Island i (MPI_Send);

5 for i = 1 to p− 1 do
6 Island i receives n log n signed permutations from

Island 0 (MPI_Recv);

population of size p ∗ n log n, where p represents the number
of islands, and sends populations of size n log n individuals to
each other island. As in [14] the (Message Passing Interface)
MPI library is used. The parallel commands MPI_Send and
MPI_Recv are used for the exchange of messages among
islands (represented by processes), and MPI_Barrier to
perform the synchronization. Experiments in [14] showed that
GARP computed the best results in terms of accuracy when
compared to the other algorithms in the literature. Regarding
the run-time performance GARP had showed a speed-up factor
of around eleven in comparison to GAS.

IV. NEW PARALLEL ISLAND MODELS GA FOR URD

The new models are based on static and dynamic topologies
for which the breeding cycle, the migration interval and the
population generationfollows as described in Section III.

New island models are proposed using bidirectional static
communication topologies: torus, tree and a 4×3-net (Fig. 4).
Regarding to communication balancing, interactions between
nodes (representing islands) are larger in the torus topology, in
which all nodes communicate with four other nodes, causing
greater spread of genes through the neighborhood when com-
pared with tree and 4×3-net topologies. In the tree topology,
internal nodes communicate with at least two and at most three
other nodes, whereas leave nodes with a single node. In the
4× 3-net all frontier nodes are connected with three nodes
except the two internals which are connected with four nodes.
In essence, such topologies offer different interactions between
islands, providing an environment conducive to observe how
miscegenation will impact in performance and accuracy of
results. In the proposed dynamic topologies a bi-directional
chained lists built from a complete graph is used. In a complete
graph all possible connections between islands are possible at
run-time and, according to the strategy used, a bi-directional
chained lists containing the links between the islands is gen-
erated, to be used during the migration process. The strategies
are based on the diversity and fitness computed in each island,
with such strategies it is expected to produce a much more
intense miscegenation than with static topologies, since in
each migration phase there is the possibility of interactions

among all islands. Details of both static and dynamic models
are presented in the following sections.

(a) (b) (C)

Fig. 4. Topology sketches with nodes representing islands and edges repre-
senting communication between islands: (a) Torus, (b) Tree, (c) 4×3-net.

A. Parallel GA with Static Topology

Two Parallel Island Models GA (for short, PIMGA) were
proposed for each topology as follows:

1) PIMGAs with each island randomly generating its own
population as described in Section III: GATrNP from the
tree topology; GAToNP from the torus topology; and, GANeNP

from the 4×3-net topology.
2) PIMGAs where each island’s population is generated

according to Algorithm 2: GATrP from the tree topology;
GAToP from the torus topology; and, GANeP from the 4×3-
net topology.

B. Parallel GA with Dynamic Topology

Initially, islands qualify as: good, bad and medium. The
concept of good, bad and medium is linked to the diversity
of each island. To compute the status of each island, we use
two metrics: variance and average. The variance, computes the
diversity in each island, high variance represents high diversity
in the population. From the average, it is possible to verify
the development of the island. Then, using both metrics, a
ranking of the islands involved is performed. The ranking
process always happens before migration starts. The proposed
algorithms are presented below.

1) PIMGAs with each island randomly generating its own
population, as described in Section III:
• GAGMBNP, in this model the communication is re-

stricted to be between islands with the same qual-
ification (good, medium or bad).

• GAGBMMNP, in this model, good islands exchange in-
dividuals with bad islands, and medium islands ex-
change individuals with medium islands.

• GARdNP, in this model the communication between
islands is done randomly: let p be the number of is-
lands; initially, we create an array of size p containing
the identifier of each island, then we apply n random
shifts of positions in the array. Later, pairs of indexes
(containing the identifier of two islands) in the array
are taken, which will share individuals among them-
selves, for instance: (0, 1), (2, 3), · · · , (k− 2, k− 1),



emphasizing that the indices are referring the array
and not identifiers of islands.

2) PIMGAs where each island has the population generated
according to Algorithm 2:
• GAGMBP with communication as for GAGMBNP.
• GAGBMMP with communication as for GAGBMMNP.
• GARdP with communication as for GARdNP.

V. EXPERIMENTS AND RESULTS

The proposed models in Sections IV-A and IV-B were
implemented using the MPI and OpenMP libraries of the C
language. This allows parallelism in two levels. The experi-
ments were executed on a computer with 256 GB of RAM, and
two processors Xeon E5-2620 with hyper-threading, where
each processor has 6 cores. Up to 24 threads were used
simultaneously, which can be done without degrading the
performance over this platform.

For the experiments, always performed over global popula-
tions of the same size, we divided the proposed PIMGAs into
two classes, which differ in the number of islands.

1) PIMGAs with 24 islands with populations of n log n
individuals: GATrNP, GATrP, GAToNP, GAToP.

2) PIMGAs with 12 islands with 2n log n individuals:
GANeNP, GANeP, GAGMBNP, GAGMBP, GAGBMMNP, GAGBMMP, GARdNP,
GARdP.

In the first class, MPI is used to exchange individuals
between islands. In the latter class, parallelism is applied at the
global level as in the former class, (MPI is used) to exchange
individuals between islands; and at the local level, each island
uses OpenMP with two threads to accelerate the individuals’
fitness computation speeding up the processing time.

In order to set up the parameters (see Table I), in such a
manner that the accuracy is improved (converging to better ap-
proximations of the minimum number of reversals), several pa-
rameter combinations were exhaustively tested. Experiments to
set up parameters were conducted as follows: groups of twenty
permutations with n genes for n ∈ {50, 60, 70, . . . , 150} were
given as input. Each algorithm proposed in Sections IV-A and
IV-B was executed ten times for each permutation in each
group. To adjust each parameter, different good values (Table
I) were empirically estimated and random values were set for
parameters that were not yet defined through the experiments.
After that, the parameters values that gave the best results for
each proposed algorithm were chosen (see Table II).

A. Experiments with Synthetic Permutations

Two experiments were performed. The first one computes
the speed-up of the proposed PIMGAs regarding GAS and, the
second one the accuracy regarding GARP, which as previously
mentioned is the best known algorithm found in the literature
for solving the URD problem.

In the first experiment, one hundred permutations of size
150 were randomly generated, and then GAS, GARP and the
proposed PIMGAs were executed ten times for each input.
The run-time for each input and algorithm was taken as the

TABLE I
ESTIMATED VALUES FOR THE PARAMETERS OF THE PIMGAs

Parameter estimated values
Crossover probability 40%, 42%, · · · , 98%, 100%
Mutation probability 1%, 2%, · · · , 5%

Percentage for selection 40%, 42%, · · · , 98%, 100%
Percentage for replacement 40%, 42%, · · · , 98%, 100%

NumMigIndividuals 1,2,3,4,5,6,7,8,9,10,11,12,13
TypeEmIndividual 1=Better, 2=Worse, 3=Random

EmPolicy 1=Clone, 2=Remove
TypeImIndividual 1=Worse, 2=Random, 3=Similar
MigrationInterval 1%, 2%, · · · , 99%, 100%

mean time of these executions. Average results are presented
in Table III.

In the second experiment, groups of one hundred permuta-
tions of size 50 to 150 were randomly generated. Algorithm
GARP and the proposed PIMGAs were executed ten times for
each permutation in each group and the mean number of
reversals computed was taken as result for each input and
algorithm. The results are shown in Table IV where the value
in each cell represents the average reversal distance computed
for each package of one hundred permutations.The best results
are highlighted in bold font.

Table III shows that the algorithm GAGBMMNP has the best
speed-up (16.02), followed by the algorithm GAToNP (15.93).
Table IV shows that the algorithm GARdP has the best results
in 8 cases out of 11, and also for the harder cases that are for
permutations of length greater that 120.

VI. DISCUSSION

In order to validate the results shown on Table IV, a
statistical analysis was performed as proposed by Demšar [32]
(and, as done in [14]). The statistical analysis was performed
taking as samples the results of each algorithm for one hundred
permutations of a given length. Additionally, the multiplicative
inverse of each element of the samples was calculated in order
to compare performances. The required steps for the statistical
comparison of the algorithms are given below.
• The Friedman test is used to test the null hypothesis that

all algorithms have the same performance.
• If the null hypothesis of the Friedman test is rejected,

then a post-hoc test is performed; in this case, the Holm
test. The Holm test is used to test the null hypothesis that
a control algorithm has the same performance regarding
each of the remaining algorithms.

The significance level used for both the Friedman and Holm
tests is α = 0.05 which is established as default by their
corresponding implementations in JAVA (CONTROL TEST
package), available at sci2s.ugr.es/sicidm.

The Friedman test rejected the null hypothesis (p-value≤ α)
that all algorithms have the same performance just for samples
corresponding to the results of the algorithms for permutations
of length greater than or equal to 70; then the Holm test was
performed for these cases. Tables V and VI show the results
of the Holm test, where the p-values in bold are those cases



TABLE II
PARAMETER SETTINGS FOR THE PIMGAs. 1=GARP , 2=GARDNP , 3=GARDP , 4=GAGMBNP , 5=GAGMBP , 6=GAGBMMNP , 7=GAGBMMP , 8=GANENP , 9=GANEP ,

10=GATONP , 11=GATOP , 12=GATRNP , 13=GATRP .

Parameter 1 2 3 4 5 6 7 8 9 10 11 12 13
Crossover probability 96% 97% 96% 96% 92% 97% 96% 92% 92% 90% 88% 96% 94%
Mutation probability 1% 1% 1% 1% 1% 1% 1% 1.4% 1% 1% 1% 1% 1%
Perc. for selection 90% 96% 94% 84% 86% 78% 94% 80% 92% 92% 96% 97% 94%

Perc. for replacement 40% 62% 50% 60% 60% 50% 54% 40% 62% 62% 62% 50% 50%
NumMigIndividuals 3 6 4 7 10 2 5 2 1 3 1 3 2
TypeEmIndividual 2 1 3 2 3 3 3 1 2 2 2 1 3

EmPolicy 1 2 2 1 1 1 2 2 1 2 2 2 1
TypeImIndividual 1 1 1 2 1 2 3 1 1 2 1 2 2
MigrationInterval 50% 88% 84% 20% 60% 30% 68% 10% 20% 94% 64% 55% 10%

TABLE III
SPEED-UP FOR THE EXPERIMENT WITH PERMUTATIONS OF SIZE 150. 1=GARP , 2=GARDNP , 3=GARDP , 4=GAGMBNP , 5=GAGMBP , 6=GAGBMMNP , 7=GAGBMMP ,

8=GANENP , 9=GANEP , 10=GATONP , 11=GATOP , 12=GATRNP , 13=GATRP .

Length 1 2 3 4 5 6 7 8 9 10 11 12 13

150 10.37 12.90 10.38 14.52 11.12 16.02 13.17 14.42 11.78 15.93 10.54 13.87 9.89

TABLE IV
AVERAGE RESULTS (A) FOR THE EXPERIMENT WITH HUNDRED SYNTHETIC PERMUTATIONS. 1=GARP , 2=GARDNP , 3=GARDP , 4=GAGMBNP , 5=GAGMBP ,

6=GAGBMMNP , 7=GAGBMMP , 8=GANENP , 9=GANEP , 10=GATONP , 11=GATOP , 12=GATRNP , 13=GATRP .

1 2 3 4 5 6 7 8 9 10 11 12 13

L Average

50 36.37 36.38 36.37 36.37 36.37 36.4 36.39 36.36 36.37 36.39 36.38 36.38 36.38
60 44.56 44.58 44.54 44.57 44.55 44.59 44.57 44.54 44.54 44.57 44.56 44.56 44.56
70 52.7 52.7 52.68 52.68 52.7 52.74 52.72 52.64 52.66 52.74 52.74 52.7 52.72
80 61.1 61.06 61.02 61.06 61.04 61.1 61.1 61.03 61.05 61.16 61.13 61.07 61.1
90 69.55 69.49 69.36 69.44 69.44 69.53 69.5 69.41 69.4 69.56 69.59 69.49 69.52

100 77.64 77.59 77.48 77.56 77.55 77.69 77.63 77.51 77.53 77.74 77.72 77.59 77.64
110 86.29 86.19 86.11 86.13 86.14 86.32 86.22 86.1 86.14 86.35 86.36 86.26 86.28
120 94.87 94.76 94.62 94.72 94.7 94.88 94.82 94.67 94.67 94.94 94.94 94.85 94.84
130 103.61 103.49 103.27 103.38 103.34 103.64 103.54 103.37 103.39 103.7 103.72 103.57 103.59
140 112.13 112.01 111.84 111.93 111.92 112.19 112.02 111.89 111.88 112.22 112.2 112.08 112.11
150 120.91 120.82 120.66 120.68 120.73 121.03 120.83 120.69 120.7 121.03 121.05 120.89 120.89

for which the null hypothesis was rejected (p-value ≤ α/i),
where i corresponds to the ith algorithm (1 ≤ i ≤ 12).

It can be observed (Tables V and VI) that the control
algorithm for all cases is GARdP, which means it is the one
with best performance (minimum rank). Note that GARdP has
statistically significant difference with respect to most of the
remaining algorithms (where p-values are in bold). Also, GARdP

does not have statistically significant difference with respect
to: GAGMBP in 6 cases out of 9; GANeNP in 4 cases out of 9; and
GAGMBNP in 4 cases out of 9.

VII. CONCLUSIONS AND FUTURE WORK

New parallel island models GA were proposed to solve
URD. These models use three static and one dynamic com-
munication topologies. The static topologies were tree, torus,
and a 4×3-net, and for each one, variants were proposed in
which either each island generates its own population or the
whole population is generated and then split among all islands
(GATrNP, GAToNP, GANeNP, and GATrP, GAToP, GANeP).

The models with dynamic topology use bi-directional
chained lists built from a complete graph, and variants were

proposed considering diversity in each island, for guiding
the migration process. Also, two categories were developed
according to generation of populations for each island by
the own island or split from a general population (GAGMBNP,
GAGBMMNP, GARdNP, and GAGMBP, GAGBMMP, GARdP).

An experiment was performed using packages of randomly
generated permutations of sizes from 50 to 150. It was
observed that GARdP computes the best results in terms of
accuracy for most of the inputs. Algorithm GARdP uses the
dynamic topology, a migration policy that selects immigrants
and emigrants randomly, and the population of each island is
taken from a global generated populations. Notice that this
model promoves diversity, in contrast to others in which for
instance, as migration policy good individuals are selected to
replace bad individuals. The significance of these observations
were confirmed by the Holm test.

A second experiment using packages of permutations of
size 150, was performed for measuring the speed-up of the
proposed PIMGAs regarding the standard sequential GA (GAS

in [12]). This experiment confirmed that GAGBMMNP has a the
best speed-up (16.02) and that GARdP, that is the best parallel



TABLE V
RESULTS OF THE HOLM TEST FOR SETS OF HUNDREDS SYNTHETIC

PERMUTATIONS WITH LENGTHS FROM 70 TO 100.

L Control i Algorithm Rank P-value α/i
Algorithm

70

12 GAGBMMNP 8.03 4.90098E-4 0.00417
11 GAToP 7.965 7.56905E-4 0.00455
10 GAToNP 7.87 0.0014 0.005
9 GAGBMMP 7.265 0.02494 0.00556
8 GATrP 7.345 0.03598 0.00625

GARdP 7 GANeNP 7.04 0.0913 0.00714
(Rank: 6 GAGMBP 6.92 0.14137 0.00833
6.11) 5 GARdNP 6.825 0.19421 0.01

4 GARP 6.725 0.26415 0.0125
3 GATrNP 6.49 0.49022 0.01667
2 GAGMBNP 6.285 0.75068 0.025
1 GANeP 6.13 0.97103 0.05

80

12 GAToNP 8.755 2.34689E-10 0.00417
11 GAToP 8.07 3.52461E-7 0.00455
10 GARP 7.560 3.08646E-5 0.005
9 GAGBMMP 7.515 4.40226E-5 0.00556
8 GAGBMMNP 7.43 8.46099E-5 0.00625

GARdP 7 GATrP 7.420 9.12336E-5 0.00714
(Rank: 6 GARdNP 6.745 0.00721 0.00833
5.265) 5 GATrNP 6.66 0.01131 0.01

4 GANeNP 6.65 0.01191 0.0125
3 GANeP 6.515 0.02323 0.01667
2 GAGMBNP 6.51 0.02379 0.025
1 GAGMBP 5.905 0.24522 0.05

90

12 GAToP 9.095 4.2203E-17 0.00417
11 GARP 8.365 1.42951E-12 0.00455
10 GAToNP 8.33 2.25691E-12 0.005
9 GAGBMMNP 8.17 1.73073E-11 0.00556
8 GATrP 7.795 1.48281E-9 0.00625

GARdP 7 GATrNP 7.25 4.26627E-7 0.00714
(Rank: 6 GAGBMMP 7.115 1.49758E-6 0.00833
4.465) 5 GARdNP 6.905 9.41171E-6 0.01

4 GANeP 6.655 6.99826E-5 0.0125
3 GAGMBP 5.925 0.00803 0.01667
2 GAGMBNP 5.65 0.03143 0.025
1 GANeNP 5.28 0.13893 0.05

100

12 GAToNP 9.49 3.70031E-20 0.00417
11 GAToP 9.125 1.4173E-17 0.00455
10 GAGBMMNP 8.58 4.55208E-14 0.005
9 GARP 7.505 2.24078E-8 0.00556
8 GATrP 7.335 1.26645E-7 0.00625

GARdP 7 GAGBMMP 7.105 1.13863E-6 0.00714
(Rank: 6 GATrNP 6.63 6.23916E-5 0.00833
4.425) 5 GARdNP 6.495 1.7096E-4 0.01

4 GANeNP 6.325 5.61008E-4 0.0125
3 GANeP 6.26 8.62932E-4 0.01667
2 GAGMBNP 5.94 0.00595 0.025
1 GAGMBP 5.785 0.01354 0.05

island model regarding accuracy, has also a competitive speed-
up (10.38) as well as all other proposed PIMGAs.

Also, it is important to stress that experiments also show
that in most of the cases the new approaches outperform the
previous best known parallel GA (GARP in [14]) in performance
as well as in accuracy.

As future work, we are planning the development of het-
erogeneous island models in which each island might perform
a different EA or explore different parameters as well as
different migration policies than the other islands.
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TABLE VI
RESULTS OF THE HOLM TEST FOR SETS OF HUNDREDS SYNTHETIC

PERMUTATIONS WITH LENGTHS FROM 110 TO 150.

L Control i Algorithm Rank P-value α/i
Algorithm

110

12 GAToP 9.185 1.57591E-15 0.00417
11 GAToNP 9.125 3.78333E-15 0.00455
10 GAGBMMNP 8.745 7.3939E-13 0.005
9 GARP 8.38 7.5541E-11 0.00556
8 GATrP 7.83 3.57619E-8 0.00625

GARdP 7 GATrNP 7.595 3.69741E-7 0.00714
(Rank: 6 GAGBMMP 6.825 2.27953E-4 0.00833
4.795) 5 GARdNP 6.185 0.01161 0.01

4 GANeP 6.14 0.0146 0.0125
3 GAGMBP 5.525 0.18502 0.01667
2 GANeNP 5.44 0.24155 0.025
1 GAGMBNP 5.23 0.42963 0.05

120

12 GAToP 9.255 1.22584E-20 0.00417
11 GAToNP 9.155 6.66999E-20 0.00455
10 GAGBMMNP 8.33 2.25916E-14 0.005
9 GATrNP 8.085 6.47424E-13 0.00556
8 GARP 7.96 3.32764E-12 0.00625

GARdP 7 GATrP 7.645 1.64586E-10 0.00714
(Rank: 6 GAGBMMP 7.31 7.34023E-9 0.00833
4.125) 5 GARdNP 6.365 4.75959E-5 0.01

4 GANeP 6.105 3.24327E-4 0.0125
3 GANeNP 5.69 0.00449 0.01667
2 GAGMBNP 5.615 0.00682 0.025
1 GAGMBP 5.36 0.02494 0.05

130

12 GAToP 10.075 8.30815E-34 0.00417
11 GAToNP 9.57 3.95218E-29 0.00455
10 GAGBMMNP 8.93 1.0093E-23 0.005
9 GARP 8.525 1.33522E-20 0.00556
8 GATrP 8.01 5.74733E-17 0.00625

GARdP 7 GATrNP 7.84 7.52833E-16 0.00714
(Rank: 6 GAGBMMP 7.37 5.66714E-13 0.00833

3.4) 5 GARdNP 6.485 2.12651E-8 0.01
4 GANeNP 5.775 1.61604E-5 0.0125
3 GANeP 5.665 3.91362E-5 0.01667
2 GAGMBNP 4.96 0.00462 0.025
1 GAGMBP 4.395 0.07082 0.05

140

12 GAToNP 9.44 4.10309E-22 0.00417
11 GAToP 9.125 9.32298E-20 0.00455
10 GAGBMMNP 9.095 1.53691E-19 0.005
9 GARP 8.24 6.90361E-14 0.00556
8 GATrP 8.06 7.90065E-13 0.00625

GARdP 7 GATrNP 7.505 7.49998E-10 0.00714
(Rank: 6 GARdNP 6.75 1.71564E-6 0.00833
4.115) 5 GAGBMMP 6.75 1.71564E-6 0.01

4 GANeP 5.945 8.9151E-4 0.0125
3 GAGMBNP 5.65 0.00532 0.01667
2 GANeNP 5.325 0.02802 0.025
1 GAGMBP 5.0 0.10808 0.05

150

12 GAToP 9.715 1.99859E-21 0.00417
11 GAGBMMNP 9.485 1.0135E-19 0.00455
10 GAToNP 9.235 5.94659E-18 0.005
9 GARP 8.035 1.08397E-10 0.00556
8 GATrP 7.67 6.95418E-9 0.00625

GARdP 7 GATrNP 7.235 5.66781E-7 0.00714
(Rank: 6 GAGBMMP 6.605 1.14167E-4 0.00833
4.48) 5 GARdNP 6.465 3.132E-4 0.01

4 GANeNP 6.145 0.0025 0.0125
3 GANeP 5.63 0.03679 0.01667
2 GAGMBP 5.455 0.07668 0.025
1 GAGMBNP 4.845 0.50751 0.05


