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Abstract—Computing evolutionary distances using gene order
data is a complex combinatory problem; nevertheless, for specific
metrics exact polynomial algorithms were proposed, having in
many cases non trivial approaches. This scenario can become
harder if we want to reconstruct phylogenies based on gene
order data: first it is necessary to explore the search space of
possible tree structures which is well-known to be exponential;
second, it is necessary a method for evaluating the cost of
these trees, i.e. to find a labeling of the internal nodes that
leads to the most parsimonious cost of a tree under a given
evolutionary distance. The latter problem was shown to be
NP-hard even for 3 genomes (median problem) under many
evolutionary distances. In this paper we propose a variable
neighborhood search approach for solving the large phylogeny
problem for data based on gene orders. Also, a greedy approach
is proposed for the small phylogeny problem aiming to reduce
the running time of the Kovac et al. dynamic programming
approach. Our proposed algorithms were implemented as the
software called HELPHY. Experiments showed that the running
time is improved for finding trees with good scores (reversal
distance) for the Campanulaceae dataset, and a new tree structure
was found having the best known score (double cut and join
distance) for the case of Hemiascomycetes dataset.

I. INTRODUCTION

Reconstructing phylogenies for organisms that are repre-
sented as gene orders brings challenges such as calculating the
evolutionary distance between two genomes, or calculating the
median of three genomes. This problem can be divided into
an outer and an inner problem. The outer problem is known as
the large phylogeny problem and aims to explore the search
space of trees and found those with the best parsimonious
values. Blanchette et al. [1] implemented a software called
BPAnalysis that explores all the search space, this method
is unfeasible when using large inputs. Moret et al. [2] ad-
dressed this problem with the software GRAPPA by sampling
the search space (and also using a parallel approach) making
it possible to use larger inputs. The inner problem is known
as the small phylogeny problem and aims to label the internal
nodes of a given tree structure such that the cost of the tree is
the most parsimonious possible. Most of the solutions to this
problem are based on solving the median problem defined over
an evolutionary distance [1], [2], [3], [4], [5], [6].

In this paper we propose two new algorithms: a variable
neighborhood search (VNS) approach to explore the search
space and solve the large phylogeny problem, and a greedy

approach to label the internal nodes of a tree and solve
the small phylogeny problem, in both cases we deal with
gene order data. The algorithms were implemented as the
system called HELPHY - Heuristics for the Large (and Small)
Phylogeny Problem. Experiments were performed using two
important datasets of the literature: the Campanulaceae and
the Hemiascomycetes datasets. HELPHY found, in just 1.27
minutes (76.2 seconds), many trees with scores 64 and 65
reversals for the large phylogeny problem using the Campan-
ulaceae dataset, these are very competitive scores since the
best trees found in the literature have score of 64 reversals.
Also, regarding the Hemiascomycetes dataset, HELPHY found
many trees with scores 76, 77 and 78 double cut and join
(DCJ) operations. Further, HELPHY improved the score of
one of these trees to 73 DCJ operations by applying the
approach to deal with the small phylogeny problem. This tree
structure is different from the one used in the literature [7],
[8] and the score is the best found as far as we know for the
Hemiascomycetes dataset.

Section II presents some definitions and related work; Sec-
tion III, the greedy algorithm for the large phylogeny problem;
Section IV, the variable neighborhood search approach for the
large phylogeny problem. Then, Section V shows the exper-
iment settings and the results. Finally, Section VI concludes
and suggests future work.

II. BACKGROUND

A. Definitions

Some of the definitions of this section were taken mainly
from [9], [6], [10], [3], [4].

A gene is represented as a signed integer, where the integer
represents the gene order inside a genome, and the sign
indicates its orientation. A genome is a set of chromosomes,
and each chromosome is a sequence of genes.

Let G be a genome with a single chromosome with
genes g1, g2, . . . , gi, gi+1, . . . , gj−1, gj , . . . , gn, a
reversal of the subsequence between the ith and the jth

genes (i ≤ j) is an operation that transforms G into
g1, g2, . . . , −gj , −gj−1, . . . , −gi+1, −gi, . . . , gn.

The reversal distance is the minimum number of reversals
necessary to transform a genome into another.



The orientation of genes might also be expressed by or-
dering the head and tail of each gene. Let ah and at be the
head and tail of a gene a respectively, which are known as
extremities of the gene. In case gene a has a positive sign
the extremities have the order at and ah, otherwise the gene
extremes have the order ah and at.

An adjacency of two consecutive genes a
and b can have one of the following forms:
{ah, bh}, {ah, bt}, {at, bh}, {at, bt}. A telomere is an
extremity of a gene a that is not adjacent to any other gene
and is represented as {ah} or {at}.

A double cut and join operation acts on two points
(adjacencies or telomeres) u and v of a genome and is defined
as follows:

(a) If u = {p, q} and v = {r, s} are adjacencies, these are
replaced either by the adjacencies ({p, r} and {s, q}) or
({p, s} and {q, r}).

(b) If u = {p, q} is an adjacency and v = {r} is an telomere,
these are replaced either by ({p, r} and {q}) or ({q, r}
and {p}).

(c) If both u = {q} and v = {r} are telomeres, these are
replaced by {q, r}.

(d) If u = {p, q} is an adjacency, then it is replaced by the
telomeres {p} and {q}.

The DCJ distance is the minimum number of DCJ opera-
tions necessary to transform a genome into another.

A phylogenetic tree for a set S of n genomes is an unrooted
binary tree with n leaves, so that every leaf of the tree is
labeled with a distinct element of S.

Given a phylogenetic tree and a labeling of its internal
nodes, the cost of the tree is the sum of the costs of all its
edges, where the cost of an edge is the evolutionary distance
between the genomes labeling the extremes of the edge.

Given a set S of n genomes and a specific evolutionary
distance (such as reversal or DCJ), the large phylogeny
problem is to find a tree and a labeling of its internal nodes
such that the cost of the tree is minimum. The number of all
possible unrooted binary trees for n genomes is:

n∏
i=3

(2i− 5) =
(2n− 4)!

2n−2.(n− 2)!

This exponential search space makes this problem challenging.
Given a set S of n genomes, a specific evolutionary dis-

tance, and a structure of a tree, the small phylogeny problem
is to find a labeling for the internal nodes of the tree such that
the cost of the tree is minimum.

The minimum case (n = 3) of the small phylogeny problem
is known as the median problem for three genomes, which
was shown to be NP-Hard for various evolutionary models
[11], [12], [13], [14]. Fig. 2 shows the DCJ problem for 3
genomes A,B, and C, where M is the median genome to be
found. The cost of this tree, to be minimized, is given by the
sum of d1 + d2 + d3.

Fig. 1. Hemiascomycetes Tree found by using Software MrBayes in [7].

Fig. 2. Median Problem for Three Genomes A, B, and C.

B. Related Work

One of the most used methods for solving the small phy-
logeny problem using gene order data is the method presented
by Blanchette et al. [15], [1] (adapted from the iterative
method proposed at [16]) in which the score of a given tree
is optimized (minimized) by solving iteratively the median of
three neighbors until no more improvement can be done. In
these works, it is used a general distance between two genomes
A and B called breakpoint distance, so that two adjacent genes
in A define a breakpoint if these genes are not adjacent in B,
these definition can easily be adapted to signed genes [15]. In
this approach, the median problem for breakpoints is reduced
to an instance of the traveling salesman problem (TSP) and
then solved using a TSP exact solver. This approach was
implemented in a software called BPAnalysis to solve the
large phylogeny problem by exploring the entire search space,
which makes this method extremely slow for larger datasets



such as the Campanulaceae as reported in [2].
In order to overcome the shortcoming of BPAnalysis,

Moret et al. [2] reimplemented it in a software called GRAPPA.
This software explores a sample of the search space, and
also uses a technique of condensation of genomes to reduce
the length of the genomes. Moreover, greedy and exact TSP
solvers (for the median problem for breakpoints) were im-
plemented and reported to be faster than the ones used by
BPAnalysis.

The linear time algorithm for calculating the reversal dis-
tance [17] was included in the analysis performed by GRAPPA
in [18]. Experiments for the Campanulaceae dataset returned
216 trees with a score of 67 reversals. Later, Moret et al.
[19] included in GRAPPA the algorithm to solve the reversal
median problem proposed by Caprara [20]. Experiments with
the Campanulaceae dataset returned many trees with a score
of 64 reversals in just one hour running on a single workstation
[19].

Bourque and Pevzner [3] proposed a different approach
for solving the reversal median problem of three genomes
(say G1, G2, G3). In this approach, the heuristic of applying
good reversals over a genome G1 is applied. According to
this heuristic, a reversal is selected whenever it leads G1

to be closer to the other two genomes G2 and G3. This
heuristic is applied also to G2 and G3 until converging to a
common ancestor. For building a tree, a new genome is added
iteratively into some edge of a partial tree. This edge is the one
that forms an instance of the median problem with the new
genome and that lead to a small score. This algorithm was
implemented into a software called MGR. Experiments with
the Campanulaceae datasets returned a tree with a score of
65 reversals.

Larget et al. [21] proposed a bayesian approach which was
implemented in a software called BADGER and found 180 dif-
ferent trees with a score of 64 reversals for the Campanulaceae
dataset.

Adam and Sankoff [4] implemented an algorithm for the
small phylogeny problem that iteratively solves the median
problem, but using as metric the DCJ distance (proposed by
Yancopoulos et al. [22] and restated by Bergeron et al. [9]).
The heuristic used to solve the DCJ median problem is similar
to the one implemented in MGR, that is, for 3 genomes that
forms an instance of the median problem, a DCJ operation
is chosen whenever it makes one genome closer the other
two genomes. Experiments with the Campanulaceae dataset
and the tree found by MGR [3] returned a score of 59 DCJ
operations, but when internal nodes were restricted to not have
additional circular chromosomes the score of the tree was 64
DCJ operations.

Up to this point, the median problem showed to be the
most important problem to be tackled in order to solve the
small phylogeny problem. In this sense efforts were directed to
solve the DCJ median problem. Xu and Sankoff [5] proposed
and exact branch and bound algorithm to solve the DCJ
median problem which was implemented in a software called
ASMedian. Later, Gao et al. [6] proposed a genetic algorithm

for the DCJ median problem. Experiments showed that Gao
et al. approach gave competitive results regarding ASMedian,
and improved the running time when harder instances of the
problem were used.

Kováč et al. [7] proposed a different approach (implemented
in a software called PIVO) for solving the small phylogeny
problem that consists in the generation of candidates for each
internal node. Each candidate is generated by applying a DCJ
operation over the genome labeling an internal node. The next
step is to score the candidates by a dynamic programming
algorithm, then the candidates with the best scores are chosen
to label the internal nodes. This process is repeated until the
overall score of the tree can not be improved more. Exper-
iments with Campanulaceae dataset and the tree structure
found by MGR [3], returned a score of 59 DCJ operations,
and a score of 64 DCJ operations for the restricted case
(just one circular chromosome is allowed for the internal
nodes). An additional experiment was performed using the
Hemiascomycetes dataset for which the tree structure (see
Fig. 1) used was calculated by using the software MrBayes
[23], this experiment returned a score of 78 restricted DCJ
operations (either one circular chromosome, or one or more
linear chromosomes are allowed for the internal nodes).

Afterwards, Herencsár and Brejová [8] proposed many
heuristic such as the tabu search for improving the PIVO soft-
ware, and implemented it in the software PIVO2. Experiments
showed that PIVO2 returned better scores regarding PIVO
for the Campanulaceae and Hemiascomycetes datasets, these
result are summarized in the Table I.

III. GREEDY ALGORITHM FOR THE SMALL PHYLOGENY
PROBLEM

Based on the approach proposed by Kováč et al. [7] (we will
call it Kovac-Opt) we propose a greedy approach (instead of
using dynamic programming) for solving the small phylogeny
problem. The main reason for proposing a greedy approach
(we wil call it Greedy-Opt) was to decrease the running time
used by PIVO, which was extremely slow.

Algorithm 1 shows the pseudocode of the greedy approach,
the main idea is to generate a set of candidates for a given
node i that are far by one DCJ operation. The candidate that
has the minimum score is chosen to replace the node i. The
score of a candidate is calculated by adding the distances of
the candidate regarding the i ancestor, i left ancestor, and i
right ancestor.

The main drawback of generating candidates is that number
of candidates can be huge, thus increasing the processing time.
In order to overcome this drawback the set of candidates was
reduced by avoiding the application of DCJ operations over
adjacencies that also appear in the i ancestor, i left ancestor,
and i right ancestor at the same time.

An important improvement taken from PIVO [7] is to re-
use as candidates the labeled internal nodes that were found
by Algorithm 1 in a previous run. This implies that we should
run some iterations of Algorithm 1 in order to exploit this
improvement.



Algorithm 1: Greedy Algorithm for the Small Phylogeny
Problem

Input: Dataset of genomes, Tree structure
Output: Score of the tree

1 Perform an initial labeling of internal nodes;
2 newScore← Calculate cost of the tree;
3 score←∞;
4 while newScore < score do
5 score← newScore;
6 foreach internal node i do
7 d1, d2, d3 ← Calc. distances of i and its ancestor,

i and its left desc., and i and its right desc.
respectively;

8 d← d1 + d2 + d3;
9 Generate candidates for node i;

10 foreach candidate c do
11 nd1, nd2, nd3 ← Calc. distances of c and i

ancestor, c and i left desc., and c and i right
desc. respectively;

12 nd← nd1 + nd2 + nd3;
13 if nd < d then
14 d← nd;
15 Save candidate c;
16 end
17 end
18 Replace internal node i by saved candidate c if it

exists;
19 end
20 newScore← Calculate cost of the tree;
21 end
22 Recover last state of labeled nodes;
23 Return score;

IV. VNS FOR THE LARGE PHYLOGENY PROBLEM

The search space of tree structures related to the large
phylogeny problem when using gene order data was explored
either exhaustively [15], [1] or by sampling [2], [18]. As far
as we know, heuristics for exploring this search space in the
context of gene order data were not applied, despite for the
case of using sequence of characters (such as DNA sequences)
there is extensive literature for reconstructing phylogenetic
trees using heuristics and evolutionary approaches [24], [25],
[26], [27], [28].

In the current work we are proposing a VNS approach for
the large phylogeny problem using gene order data. VNS is a
meta-heuristic proposed by Mladenović and Hansen [29], this
framework changes among neighborhood structures searching
for an optimal (or near-optimal) solution [30].

Given a solution T ′ (tree structure) we say that it is a
neighbor of T (tree structure), if the former can be reached
from the latter in a single step (by applying a move operator).
The neighborhood structure N (T ) of a solution T is the set
of all its neighbors [31].

For the case of reconstructing phylogenetic trees using as
input data sequence of characters, Andreatta and Ribeiro [25]
used the VNS variant known as General VNS with three
neighborhood structures. In our work, a simpler VNS variant
is used known as Reduced VNS (see [30] for this variant)
with four neighborhoods structures. Algorithm 1 is used for
evaluating the score (cost) of a given tree structure.

Algorithm 2 shows the Reduced VNS for the large phy-
logeny problem, this algorithm was implemented in the system
HELPHY. In this algorithm, four neighborhood structures are
used and are represented as Nk, k = 1, . . . , kmax = 4. These
structures will be presented in the next subsections.

Algorithm 2: (Reduced) VNS for the Large Phylogeny
Problem
Input: Dataset of genomes
Output: A tree structure with a score

1 Generate an initial solution T (tree structure);
2 score← Calculate cost of T (Algorithm 1);
3 iteration← 1;
4 while iteration ≤ maxIterations do
5 k ← 1;
6 while k ≤ kmax do
7 Shaking:
8 Generate randomly a solution T ′ (tree structure)

for the neighborhood structure Nk(T );
9 newScore← Calculate cost of T ′ (Algorithm 1);

10 Move or not:
11 if newScore < score then
12 score← newScore;
13 T ← T ′;
14 k ← 1;
15 end
16 else
17 k ← k + 1;
18 end
19 end
20 end
21 Return tree T and score;

As a further step, a refinement procedure is executed for the
tree found by Algorithm 2, this procedure consists in finding
the best neighbors for the following neighborhoods structures:
N5 and N6 (see next subsections).

Instead of defining a neighborhood structure by enumerating
all of its neighbors, we can define it implicitly by referring to
the potential transitions that can be reached after the appli-
cation of a move operator [31]. In the following subsections
it will be presented the procedure used to generate the initial
solution and the neighborhood structures already mentioned in
this section: N1, . . . ,N6.

A. Generating Initial Solutions

Given a set S of genomes (leaves), we can construct an
initial phylogenetic tree T by following the next steps:



1) Remove a random element g from S.
2) Insert g into some edge of tree T .
3) Go to step 1) or stop if the set S is empty.
There are many policies for inserting a genome into a tree,

which give rise to variants of this basic algorithm [25]. The
variant used in this work is the one that inserts a genome into
the edge that leads to the first minimum increase in the cost of
the tree. Andreatta and Ribeiro [25] showed that this variant is
the one with the best trade-off between accuracy and running
time.

B. Neighborhood Structures

The neighborhood structures that were used in our work are
the following:
• N1: Nearest Neighborhood Interchange (NNI) [32], [25].

A neighbor is generated by following the next steps: (1)
select randomly (from a tree) an internal edge, which will
have four subtrees connected to it; (2) swap the position
of two non adjacent subtrees, i.e., subtres not sharing the
same internal node.

• N2: Single Step (STEP) [25]. A neighbor is generated by
taking out a leaf node from a tree and inserting it into
another edge.

• N3: Subtree Pruning and Regrafting (SPR) [25], [33],
[34], [35]. A neighbor is generated by following the next
steps: (1) take out an internal node (from a tree), giving
rise to three subtrees; (2) join two subtrees by an edge;
(3) join the remaining subtree by an edge different from
the original position.

• N4: Tree Bisection and Reconnection (TBR) [36], [35].
A neighbor is generated by following the next steps: (1)
take out an edge (from a tree), giving rise to two subtrees;
(2) reconnect the two subtrees by any pair of edges of
the first and second subtrees;

• N5: Subtree Scramble (SCRAMBLE) [37]. A neighbor is
generated by selecting randomly a subtree (from a tree)
and then rearranging randomly its structure.

• N6: Leaf Swap (SWAP) [37]. A neighbor is generated
by selecting randomly two leaves (from a tree) and then
swapping their positions.

V. EXPERIMENTS

Experiments are presented, which were performed for the
small and large phylogeny problem and using as input two
datasets of the literature: the Campanulaceae cpDNA [10],
[38] and the Hemiascomycetes mtDNA [39] datasets.

Experiments were executed in an OSX operating system
using a i7 processor with 16 GB of RAM. Also, the HELPHY
software was compiled with gcc using the -O2 option.

Note that the restricted DCJ distance have different defi-
nitions for each dataset. In the case of the Campanulaceae
dataset, the restricted DJC considers only ancestor genomes
(internal nodes) with one circular chromosome. In the case
of the Hemiascomycetes dataset, the restricted DCJ considers
either ancestor genomes (internal nodes) with one circular
chromosome, or with one or more linear chromosomes.

A. Experiments for the Small Phylogeny Problem

Experiment 1. For each dataset and each distance (DCJ
and Restricted DCJ) the following experiment was performed
in order to find the best possible scores.
• Execute HELPHY 50 times for the small phylogeny prob-

lem, using the re-implementation of Kovac-Opt, and save
the best score found. The Kovack-Opt has 10 iterations.

• Execute HELPHY 50 times for the small phylogeny
problem, using the Greedy-Opt (Algorithm 1), and save
the best score found. The Greedy-Opt has 10 iterations.

Table I shows the results (tree scores), in the two last lines,
using the configuration of Experiment 1 for the Campanu-
laceae dataset. The tree structure was taken from [3] with
a reversal score of 65. Note that HELPHY, using the re-
implementation Kovac-Opt, achieved the same results as PIVO
(for DCJ and Restricted DCJ distance). Thus for the Campan-
ulaceae dataset the replication of results was successful even
when PIVO represents the phylogenies as rooted binary trees.
Also, HELPHY with the Greedy-Opt, achieved the same results
as PIVO for the DCJ distance, but not for the Restricted DCJ
distance.

TABLE I
TREE SCORES FOUND BY HELPHY FOR THE SMALL PHYLOGENY

PROBLEM USING THE Campanulaceae DATASET

Reversal DCJ Restricted
Distance DCJ

GRAPPA [18] 67 - -
MGR [3] 65 - -
GRAPPA [19] 64 - -
BADGER [21] 64 - -
ABC [4] - 59 64
PIVO [7] - 59 62
PIVO2 [8] - 56 59
HELPHY (Kovac-Opt 1) - 59 62
HELPHY (Greedy-Opt) - 59 63

Table II shows the time comparison for the two tree opti-
mizers (Kovac-Opt and Greedy-Opt) used by HELPHY after
50 executions, using the Campanulaceae dataset and the DCJ
distance. From this table, it can be observed that HELPHY with
the Greedy-Opt is 6.72 times faster than HELPHY using the
Kovac-Opt.

TABLE II
TIME COMPARISON OF THE TREE OPTIMIZERS USED BY HELPHY FOR THE
SMALL PHYLOGENY PROBLEM USING THE Campanulaceae DATASET (FOR

DCJ)

Total Time Avg. Time
HELPHY (Kovac-Opt) 4.64 min 5.57 sec
HELPHY (Greedy-Opt) 0.69 min 0.83 sec

Table III shows the results (tree scores), in the two last
lines, using the configuration of the Experiment 01 for the
Hemiascomycetes dataset. The tree structure used as input
was calculated in [7] by using the program MrBayes [23].

1This is the re-implementation of Kovac-Opt proposed in [7]



From this table it can be observed that HELPHY, using a re-
implementation of Kovac-Opt, has lower score than PIVO2
just regarding the DCJ distance.

TABLE III
TREE SCORES FOUND BY HELPHY FOR THE SMALL PHYLOGENY

PROBLEM USING THE Hemiascomycetes DATASET

DCJ Restricted
DCJ

PIVO [7] - 78
PIVO2 [8] 75 77
HELPHY (Kovac-Opt) 74 79
HELPHY (Greedy-Opt) 77 82

Table IV shows the time comparison for the two optimizers
used by HELPHY after 50 executions, using the Hemias-
comycetes dataset and the DCJ distance. From this table it
can be observed that HELPHY with Greedy-Opt is 3.95 times
faster than HELPHY with Kovac-Opt.

TABLE IV
TIME COMPARISON OF THE TREE OPTIMIZERS USED BY HELPHY FOR THE

SMALL PHYLOGENY PROBLEM USING Hemiascomycetes DATASET (FOR
DCJ)

Total Time Avg. Time
HELPHY (Kovac-Opt) 2.49 min 2.99 sec
HELPHY (Greedy-Opt) 0.63 min 0.77 sec

B. Experiments for the Large Phylogeny Problem

The results of the previous experiment gave us valuable
information for choosing the tree optimizer that is going to
be used as default by HELPHY for solving either the large or
small phylogeny problem. Indeed, Greedy-Opt is faster than
Kovac-Opt and then is the default option when dealing with the
large phylogeny problem, due to the exponential tree space to
be explored. However, when dealing with the small phylogeny
problem the main aim is to reduce the score for a fixed tree
structure, and in this case the default option would be the
Kovac-Opt. Both optimizers have as default ten iterations for
the small phylogeny problem, and one iteration for the large
one.

Experiment 2. In order to explore the tree structure space
and find a tree structure with the best possible score the
following experiment was performed for each dataset:
• Execute HELPHY 50 times for the large phylogeny prob-

lem and save the tree structures with their scores (reversal
or DCJ).

• Choose those tree structures with the best scores.
Experiment 3. After finding a set of tree structures with

good scores the following experiment is performed for each
distance (DJC and Restricted DCJ) and each tree in order to
reduce their scores:
• Execute HELPHY 50 times for the small phylogeny

problem and save the best score found (DJC or Restricted
DCJ).

Table V shows the results of experiments 2 and 3 for the
Campanulaceae dataset. In the second column it appears the
score of the best trees found (with 64 and 65 reversals) for the
large phylogeny problem (Experiment 2). The third and fourth
columns show the scores (DCJ and Restricted DCJ) found by
HELPHY for the Experiment 3. Note that two trees (Tree32
and Tree33) were found having the best scores: 64 reversals,
59 DCJ, and 62 Restricted DCJ. These results are equal to
those found by the PIVO algorithm using the tree structure
found by MGR [3].

TABLE V
TREES (AND SCORES) FOUND BY HELPHY FOR THE LARGE (AND SMALL)

PHYLOGENY PROBLEM USING THE Campanulaceae DATASET

Large Phylogeny Small Phylogeny Small Phylogeny
(Reversal) (DCJ) (Restricted DCJ)

Tree32 64 59 62
Tree33 64 59 62
Tree40 64 59 63
Tree1 65 59 62
Tree11 65 61 63
Tree12 65 60 65
Tree18 65 61 62
Tree26 65 61 63
Tree27 65 61 63
Tree28 65 61 63
Tree38 65 61 63
Tree6 65 61 63

Table VI shows the running time of HELPHY for the
experiments performed to generate Table V. HELPHY took just
1.27 minutes to find three trees with a score of 64 reversals
and nine trees with a score of 65 reversals. When dealing
with the reversal distance HELPHY uses the algorithm that
iteratively solves instances of the median problem to score
a tree. The routine for solving the reversal median problem
was taken from GRAPPA. For the small phylogeny problem
HELPHY took 66.04 minutes and 70.52 minutes for the DCJ
and Restricted DCJ distance, respectively. The overall time
spent for analyzing the Campanulaceae dataset is 137.83
minutes (2.29 hours).

TABLE VI
RUNNING TIME OF HELPHY FOR THE LARGE AND SMALL PHYLOGENY

PROBLEMS USING THE Campanulaceae DATASET

Time (min)
Large Phylogeny (Reversals) 1.27
Small Phylogeny (DCJ) 66.04
Small Phylogeny (Restricted DCJ) 70.52
Total 137.83

Table VII shows the results of experiment 2 and 3 for the
Hemiascomycetes dataset. In the second column it can be
observed the score of the best trees found (76, 77, and 78
DCJ) for the large phylogeny problem. The third and fourth
columns show the scores (DCJ and Restricted DCJ) found by
HELPHY for the small phylogeny problem (Experiment 3). It
was found a tree (Tree4) with the following best score: 73
DCJ and 76 Restricted DCJ. This tree has better scores than



the ones found by PIVO2 (and PIVO) for the tree structure
found using MrBayes.

TABLE VII
TREES (AND SCORES) FOUND BY HELPHY FOR THE LARGE (AND SMALL)

PHYLOGENY PROBLEM USING THE Hemiascomycetes DATASET

Large Phylogeny Small Phylogeny Small Phylogeny
(DCJ) (DCJ) (Restricted DCJ)

Tree48 76 76 82
Tree5 77 76 84
Tree20 77 75 77
Tree30 77 73 80
Tree4 78 73 76
Tree11 78 76 79
Tree22 78 74 80
Tree42 78 75 78
Tree44 78 76 79

Table VIII shows the running time of HELPHY for the
experiments performed to generate Table VII. HELPHY took
38.37 minutes to find one tree with a score of 76 DCJ,
three trees with a score of 77 DCJ, and five trees with a
score of 78. For the case of the small phylogeny problem,
HELPHY took 19.34 minutes and 20.73 minutes for the DCJ
and Restricted DCJ distance, respectively. The overall time
spent for analyzing the Hemiascomycetes dataset is 78.44
minutes (1.31 hours).

TABLE VIII
RUNNING TIME OF HELPHY FOR THE LARGE AND SMALL PHYLOGENY

PROBLEMS USING THE Hemiascomycetes DATASET

Time (min)
Large Phylogeny (DCJ) 38.37
Small Phylogeny (DCJ) 19.34
Small Phylogeny (Restricted DCJ) 20.73
Total 78.44

VI. CONCLUSION

In this paper we proposed a greedy approach for the
small phylogeny problem and a variable neighborhood search
approach for the large phylogeny problem, both for dealing
with gene order data. Algorithms were implemented in the
HELPHY system.

Two important cases from the literature were used: the
Campanulaceae and the Hemiascomycetes datasets. Results
showed that the greedy approach improves the running time
regarding the dynamic programming approach, but loses ac-
curacy. Based on these results the greedy approach was used
as default (case of DCJ distance) for evaluating the cost of
the trees for the large phylogeny problem and, the dynamic
programming approach proposed by Kováč et al. [7] was used
as default (case of DCJ distance) for the small phylogeny
problem. For the case of the reversal distance, Caprara’s algo-
rithm for the reversal median problem (taken from GRAPPA)
was used to evaluate the cost of a tree structure by using the
iterative algorithm presented by Blanchette et al. [15].

The HELPHY software showed to be suitable for analyzing
datasets using the reversal and DCJ distances. In the case of the

Campanulaceae dataset the running time was improved to just
1.27 minutes for discovering three trees of score 64 reversals
and nine trees of score 65 reversals, since the best running time
found in the literature [19] was of one hour for finding trees
of score 64 reversals. For the case of the Hemiascomycetes
dataset, a modest running time of 38.37 minutes was used
for finding one tree of score 76 DCJ, three trees of score 77
DCJ, and five trees of score 78 DCJ. However, for reducing
these scores it was necessary to run HELPHY for the small
phylogeny problem, increasing the overall running time to
1.31 hours, but improving the score of the trees, with one
of them having the score of 73 DCJ (and 76 restricted DCJ).
This tree structure found (see Fig. 3) for the Hemiascomycetes
dataset is different (and improves the score) from the one
found by MrBayes program in [8] with score of 75 DCJ
(and 77 restricted DCJ).

Fig. 3. Hemiascomycetes Tree found by HELPHY.

As a future work, we are planning to implement other
meta-heuristics algorithms such genetic algorithms, memetic
algorithms, and simulated annealing. For these evolutionary
approaches the Algorithm 1 could be used as fitness function.
Also, we will test parallel approaches for the variable neigh-
borhood search such the ones commented in [30], this will
reduce the overall running time for analyzing datasets for the
large phylogeny problem. Finally, it is interesting to test the
HELPHY software with other datasets based on gene orders.

APPENDIX

Best trees in newick format from Table V:
• Tree32: (Platycodon,((Tobacco,(((Legousia,Triodanus),

Asyneuma),(((Campanula,Adenophora),Trachelium),
((Merciera,Wahlenbergia),Symphyandra)))),
(Codonopsis,Cyananthus)))

• Tree33: (Adenophora,(Campanula,(((((Codonopsis,
Cyananthus),(Tobacco,Platycodon)),(Asyneuma,
(Triodanus,Legousia))),((Merciera,Wahlenbergia),
Trachelium)),Symphyandra)))



• Tree40: (Merciera,(Wahlenbergia,((((((Codonopsis,
Cyananthus),Platycodon),Tobacco),((Triodanus,Legousia)
,Asyneuma)),(Symphyandra,(Adenophora,Campanula))),
Trachelium)))

• Tree1: (Triodanus,(Legousia,(((Symphyandra,
((Campanula,Adenophora),((Wahlenbergia,Merciera),
Trachelium))),((Platycodon,Tobacco),(Cyananthus,
Codonopsis))),Asyneuma)))

Best trees in newick format from Table VII:
• Tree48: (canJiuM,((canAlaM,((canSubM,(((canAlbM,debHanM),

picFarM),(canMalM,lodEloM))),((canNerM,canFriM),
((canSojM,canTroM),canVisM)))),(canOrtM,
(canOrLM,canParM))))

• Tree5: (canAlaM,((canSojM,(((canFriM,canVisM),(canAlbM,
canTroM)),canNerM)),((((lodEloM,canMalM),picFarM)
,canSubM),(debHanM,(canJiuM,(canOrtM,
(canParM,canOrLM)))))))

• Tree20: (canSojM,((canFriM,((canTroM,canNerM),canVisM)),
(canAlbM,(canMalM,(((lodEloM,(picFarM,debHanM)),
canAlaM),(canSubM,(canJiuM,(canOrtM,
(canOrLM,canParM)))))))))

• Tree30: (lodEloM,((canAlaM,canSubM),((((canMalM,debHanM),
(canJiuM,(canOrtM,(canOrLM,canParM)))),picFarM),
((canAlbM,(canVisM,((canNerM,canFriM),canTroM))),
canSojM))))

• Tree4: (canVisM,(canFriM,(canNerM,(canSojM,((canAlbM,
(((canSubM,canAlaM),((((canOrtM,canJiuM),
(canOrLM,canParM)),(canMalM,lodEloM)),picFarM)),
debHanM)),canTroM)))))
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