
Parallel Genetic Algorithms with Sharing of
Individuals for Sorting Unsigned Genomes by

Reversals
Lucas A. da Silveira José L. Soncco-Álvarez

Department of Computer Science
Universidade de Brası́lia

Email: {lucas.angel9, jose.soncco.alvarez}@gmail.com

Mauricio Ayala-Rincón
Departments of Computer Science and Mathematics

Universidade de Brası́lia
Email: ayala@unb.br

Abstract—Rearrangement by reversals is a suitable global
operation when treating genomes with a single chromosome.
The problem of sorting by reversals unsigned genomes is an
optimization problem that was shown to be NP-hard. Sev-
eral approximation algorithms were proposed, among them, in
previous work, was introduced a competitive genetic algorithm
and its standard parallel version which provided a substantial
speedup. In this paper, two approaches using island models to
parallelize such algorithm are presented. The first approach
uses the unidirectional ring communication topology to exchange
individuals between neighboring islands and, the second uses a
complete graph scheme for the distribution of individuals among
islands. Both approaches were proposed with the objective of
improving precision (that is, for reducing the number of rever-
sals) and decreasing the runtime regarding the sequential version.
Experiments were performed with randomly generated synthetic
genomes and the results show that the parallel approach using
the ring communication topology outperforms the previously
proposed genetic algorithm and its parallel version in terms
of accuracy, providing solutions with less reversals and, that
the parallel approach using the complete graph topology does
not provide significant improvements regarding the others algo-
rithms. Regarding execution time, both new parallel approaches
get competitive speedups regarding the speedup achieved by the
standard parallel version of the genetic algorithm.

I. INTRODUCTION

The study of the evolutionary distance between different
species using biological genomes requires the reconstruction
of the sequence of evolutionary events which takes one
genome to another. There is a diversity of rearrangement
mechanisms using global operations such as reversals, trans-
positions, duplications and translocations. In this work, we are
working with genomes given as sequences of genes arranged
into just one chromosome using the reversal operation as
rearrangement mechanism.

A unichromosomal genome can be represented as a per-
mutation π = (π1 π2 . . . πn) defined over the set {1, · · · , n}
where n is the number of genes in the genome. In addition,
two variants of permutations are taken into account: signed and
unsigned permutations. In the first case, each πi has a positive
or negative sign reflecting its orientation within the genome;
in the unsigned case, the gene orientation is not taken into
consideration. Permutations can be seen as sequences and the

reversal operation converts a contiguous sub sequence into
its reverse changing also the sign of each gene when orienta-
tion is considered. The reversal distance problem consists in
computing the minimum number of reversals that transform a
genome into another.

For the signed reversal distance problem (SRD), Hannen-
halli and Pevzner showed that the problem belongs to the class
P by giving an exact polynomial algorithm (O(n4)) [1]. A
year later, Berman and Hannenhalli improved this providing
an O(n2α(n)) running time algorithm, where α is an inverse
Ackerman’s function [2]. After that, Bader et al. proposed a
linear time algorithm [3].

The unsigned reversal distance problem (URD) is addressed
in this paper and considers unsigned permutations. It was
shown to be NP-Hard by Caprara [4]. Before proving the
NP-Hardness of the problem, Kececioglu and Sankoff de-
signed an approximation algorithm of ratio 2 [5], and Bafna
and Pevzner provided an algorithm that improved the ratio to
1.75 [6]. Moreover, Cristie improved the ratio to 1.5 ([7])
and then, Berman et al. to 1.375 ([8]). Recently, Soncco-
Álvarez and Ayala-Rincón proposed a genetic algorithm (for
short GA) [9], referred in this paper as GAS , and a parallel
version [10], referred as GAP , to solve the URD problem.
The algorithm GAS maps a given unsigned permutation of
length n into a subset of its 2n possible signed versions (each
unsigned gene might assume two directions). This is done by
assigning randomly a positive or negative sign to each gene
of the input permutation. The subset of signed permutations
forms the population of GAS , where each solution for SRD
of each individual in the population is indeed a feasible
solution for the input unsigned permutation. The fitness of the
individuals of the population is computed by using the linear
time algorithm proposed by Bader et al. [3] for computing
the reversal distance of signed permutations. The algorithm
GAP is based on the model of multiple-population coarse-
grained, also known as the island model, where each island
maintains its own GAS instance with a population of size
n log n evolving independently of the other islands. The output
of GAP is the best result among all islands. It is important to
highlight that the authors implemented the 1.5-approximation

algorithm [7] as a quality control mechanism for the solutions
provided by the genetic algorithms. Through experiments,
it was concluded that GAS has better performance regarding
precision of the results than the 1.5-approximation algorithm,
and that GAP improves the quality of the solutions computed
by GAS using 23 islands (and one master) with populations of
size n log n, which is not surprising since the whole population
is much larger than the used by the GAS .

The main contribution of this work is the development
and implementation of two parallel genetic algorithms. These
algorithms follow the island model and propose different mi-
gration mechanisms between the islands with the objective of
improving the time and accuracy of the results. Two different
topologies are considered with different migration policies.
• The first parallel approach maintains several instances of
GAS each one dealing with a population of size n log n
and uses a unidirectional ring communication topology to
exchange individuals between neighboring islands. Based
on this approach two variants were proposed,

– In the first variant, denoted as GARNP , different
populations for each island are used.

– In the second variant, denoted as GARP , the popu-
lation of the GAS is partitioned into populations of
equal size and distributed among the islands.

• The second parallel approach uses a complete graph
(clique) topology for exchanging individuals among is-
land populations. As for the first approach, this one has
two variants that are denoted as GACNP and GACP . The
former is a variant with a different population for each
island and in the latter the population of GAS is partitioned
among the islands.

Section II presents the necessary definitions and terminol-
ogy; Section III presents the parallel GA approaches for the
URD problem; Section IV presents experiments and results;
and, before concluding and discussing future work in Section
VI, Section V discusses the results. The source code and data
used in the experiments is available at genoma.cic.unb.br.

II. DEFINITIONS AND TERMINOLOGY

This section presents the definitions and terminology related
to unsigned permutations which were taken from [11] and [12].

Consider the group of permutations of length n > 0, where
n ∈ N. In this group we distinguish the identity permutation
that is represented by ι and defined as ιk = k for all
k = 1, ..., n. Permutations of length n are also abstracted as
bijective functions π from and onto the set {1, . . . , n}; in the
functional setting, instead πi we can write π(i) to denote the
ith element of the permutation. The size of a permutation is
its length. The inverse of a permutation π is denoted as π−1

and defined as π−1(j) = i if and only if π(i) = j, for all
1 ≤ j ≤ n. A reversal ρ(l,m), where 1 ≤ l ≤ m ≤ n, is an
operation that (is an special kind of permutation by itself and)
acts over a permutation π, and reverses the elements included
in the interval from position l to position m.

Given two permutations π and δ, the reversal distance
between them is the minimum number of reversals that

are required to transform π into δ. By algebraic properties
of permutation groups, reversals ρ1, . . . , ρk are such that
πρ1 · · · ρk = δ if and only if δ−1πρ1 · ρk = ι. Thus, a
solution to the problem of determining the minimum number
of reversals to transform π into δ also transforms the unsigned
permutation δ−1π into the identity permutation. Therefore we
abstract the URD problem as the problem of transforming by
reversal a permutation into the identity.

Figure 1 shows how the sequence of reversals ρ(2,5), ρ(3,5),
ρ(4,5) sorts the permutation (1 3 5 4 2 6).

1 3 5 4 2 6

1 2 4 5 3 6

1 2 3 5 4 6

1 2 3 4 5 6

Fig. 1. Application of a sequence of reversals to transform a permutation
into the identity permutation (pivots 0 and 7 are not depicted)

By convenience we will extend any permutation π with
the initial and final fixed pivots 0 and n + 1: π0 = 0 and
πn+1 = n+1. Let l ∼ m denote the property |i−j| = 1. Two
elements πl and πm of π are said to be consecutive if l ∼ m.
Consecutive elements πl and πm of π are said

• to be adjacent if πl ∼ πm and
• to form a breakpoint if πl � πm.

Note that in the first permutation in Figure 1 the consecutive
elements 5 and 4 are adjacent while all other consecutive
elements (1 and 3, 3 and 5, 4 and 2 and 2 and 6) form
breakpoints. Notice also that the first two reversals eliminate
one breakpoint while the third one eliminates two breakpoints
(3 and 5, and 4 and 6).

Let b(π) denote the number of breakpoints in π. The only
permutation that holds b(π) = 0 is the identity permutation,
for any other permutation, b(π) > 0. Notice that this happens
because we are considering extended permutations in which
the pivots π0 = 0 and πn+1 = n + 1 are fixed; thus the
permutation defined as πi = n + 1 − i, for 1 ≤ i ≤ n, has
indeed two breakpoints given by the consecutive elements 0
and n, and 1 and n+ 1.

Let ρ be a reversal that transforms π into π′, then b(π) −
b(π′) ∈ {−2,−1, 0, 1, 2}, which means that ρ might mantain
the number of breakpoints, or eliminate or add one or two
breakpoints. In the literature an i-reversal is defined as a
reversal that reduces the number of breakpoints by i. The
fact that at most two breakpoints can be eliminated after
application of a reversal is used as a heuristic in approximate
algorithms: the application of 2-reversals is prioritized in order
to sort permutations ([5], [6], [7]) expecting that through this
local optimization the convergence to the identity permutation
might be quicker than through applications of 1- and/or 0-
reversals. Notice that this is the case for the initial permutation
in Figure 1: applying the 2-reversal ρ(3,5) we obtain the

permutation (1 3 2 4 5 6) and then applying the 2-reversal ρ(2,3)
we obtain the identity ι.

The elements of a signed permutation π are either oriented
positively (+πi) or negatively (−πi) for 0 < i < n for n the
size of π. The reversal operation over signed permutations is
defined as for unsigned permutations except that the sign of all
elements between the range of action of the reversal operation
changes; for instance, if we apply the permutation ρ(2,5) to the
permutation (−1+3+5−4+2+6) we obtain the permutation
(−1−2 +4−5−3 +6). An unsigned permutation π′ of length
2n can be obtained from a signed permutation π by replacing
each positive element +πi by the pair (2πi−1, 2πi), and each
negative element (−πi) by the pair (2πi, 2πi−1). For instance,
the permutation (1 −3 −5 +4 +2 +6) is transformed into the
unsigned permutation (1 2 6 5 10 9 7 8 3 4 11 12) and the signed
identity (+1 +2 +3 +4 +5 +6) corresponds to the unsigned
identity of length 12: (1 2 3 4 5 6 7 8 9 10 11 12). Also, pivots 0
and 2n+1 need to be added. Since this transformation provides
permutations that consist of consecutive pairs of adjacent ele-
ments (of the form 2i−1 and 2i) the reversals to be considered
for sorting them should not break these adjacencies. Thus, the
class of reversals acting over these class of permutations are
of the form ρ2l−1,2m where 1 ≤ l ≤ m ≤ n, which is a
subgroup of the group of permutations of length 2n [13]. This
transformation is applied to solve the SRD problem in exact
algorithmic approaches such as those proposed in [14] and [3].

A. Genetic Algorithm

The last two authors presented in [9] a modified version of
the standard genetic algorithm GAS (introduced in [15]) briefly
described below. Initially, a random population of signed
permutations is generated based on the input unsigned permu-
tation. Posteriorly, in each generation of GAS the reproduction
phase is performed as follows: select two individuals of the
population, which are among the best current individuals for
which crossover and mutation operations are applied gener-
ating two new individuals. The fitness function used is the
reversal distance for signed permutations. If the new individu-
als are better than those in the current population, they become
members of the population. The algorithm GAS finishes after
all the generations, that is fixed as the length of the input
permutation, have been completed.

In GAS as in all our other approaches, the fitness function
is computed through application of the algorithm for solving
the SRD problem proposed by Bader in [3]. We use an
implementation provided by the author and available as part
of a framework at www.cs.unm.edu/∼moret/GRAPPA. The
pseudo-code of GAS is shown in Algorithm 1.

B. Parallel GA with Independent Runs

Soncco-Álvarez et al. use the simplest version of the parallel
island model ([16]) to propose GAP , a parallel version of
GAS . In this approach, based on the master-slave model, each
slave process (representing an island) executes an instance
of GAS (selection, crossover, mutation, replacement) within
its respective population of size n log n; the master process

Algorithm 1: GA for Calculating URD
Input: Unsigned permutation π
Output: Number of reversals to sort π

1 Generate the initial population of signed permutations;
2 Compute fitness of the initial population;
3 for i = 1 to Length(π) do
4 Perform the selection and save the best solution

found;
5 Apply the crossover operator;
6 Apply the mutation operator;
7 Compute the fitness of the current population;
8 Perform replacement of the worse individuals;

receives the individual and the best fitness values found by
each slave process in each cycle of GAS . At the end of the
stage of generations the master process returns the solution of
the best individual as output of GAP . It is worth mentioning
that when a process is sending or receiving data it gets blocked.
The pseudo-code of this approach is show in Algorithm 2.

Algorithm 2: Parallel GAS with Multiple Populations for
URD (GAP)
Input: Unsigned permutation π
Output: Number of reversals to sort π
/* For the master process: */

1 for each generation do
2 for all slave processes do
3 receive the best fitness from a slave;
4 if solution < best fitness then
5 solution = best fitness;

/* For a slave process: */
6 Generate the initial pop. of signed permutations for π;
7 Compute fitness of the initial population;
8 for i = 1 to Length(π) do
9 Perform the selection and save the best solution

found;
10 Apply the crossover operator;
11 Apply the mutation operator;
12 Compute the fitness of the current population;
13 Perform replacement of the worse individuals;
14 Send to the master the best fitness found;

III. PARALLEL GA APPROACHES FOR URD

The discussion on our parallel GAs follows the stratification
of parallel evolutionary algorithms proposed by Cantú-Paz in
[16] and Sudholt in [17].

Independent runs is the strategy used in the algorithm GAP .
This strategy consists in the execution of independent runs of
the same algorithm (in our case GAS) in parallel and after that,
the results are collected and the best solution is given as output.
This strategy is used to streamline the demand of experiments

trying to avoid interference due to communication between
processes. In addition, there is a variant of this strategy referred
as island model, also called of coarse-grained model, where
the population of each parallel execution is maintained in an
island. In this model each island evolves independently most of
the time. However, after some time the solutions are exchanged
between islands through migration.

When migration is allowed, it is necessary to organize
communication between islands in a specific topology. At
determined points of time individuals selected from each
island are sent and received to and from the neighboring
islands; such individuals are called (emi and im)migrants and
are included on the target island according to some criterion.
Different communication topologies and migration strategies
are proposed with the intention to favor islands that are trapped
in regions of low aptitude in the search space so that they can
be populated by individuals from more successful islands. This
helps to coordinate the search to focus on the most promising
regions of the search space and use the available resources
effectively. Here we are using two island communication
strategies: unidirectional ring and complete graph topologies,
which can be seen in Figure 2.

(a) (b)

Fig. 2. (a) complete graph topology and (b) unidirectional ring topology

After a migration topology is fixed, other design options or
migration policies that affect the behavior of an island model
should be established. Below we highlight design options of
great importance:
• Emigration policy: remove or clone individuals taking

into account the choice among worse, random, or better
individuals.

• Immigration policy: replace individuals considering the
choice among worse, random, or better individuals in the
target population.

• Number of immigrants and emigrants: number of individ-
uals that will be sent and received from one population
to another.

• Migration interval: time or number of generations be-
tween one migration and another.

According to the specific GA approach (and related prob-
lem) being parallelized, setting adequately these design options
is of great importance in order to adjust properly the whole
population convergence. Negligentiating this will compromise
the quality of results.

According to these design options, the parallel GAs pro-
posed in this work (GARNP , GARP , GACNP and GACP) use
the parameters showed in table I. Below, we explain these
parameters.

• Crossover and mutation probability and, selection and
replacement percentages, that are the basic parameters
of a GA [18].

• NumMigIndividuals represents the number of individuals
for migration.

• TypeEmIndividual represents the type of individuals se-
lected for emigration among

1) Better individuals.
2) Worse individuals.
3) Random individuals.
• EmPolicy represents the emigration policy:

1) Clone individuals.
2) Remove individuals.
• TypeImIndividual represents the immigration policy, that

is the kind of individuals selected in the target island to
be replaced by the immigrants:

1) Worse individuals.
2) Random individuals.
3) Similar individuals.
By similar individuals one understand individuals with
the same fitness than the immigrants.

• MigrationInterval represents the migration interval that
is given from the percentage of reproduction cycles
that needs to be performed to initiate the exchange of
individuals between islands.

We use the (Message Passing Interface) MPI library. The
standard (parallel) commands MPI Send and MPI Recv were
used for the exchange of messages among processes (processes
that represent the islands), and MPI Barrier to perform the
synchronization of running processes.

A. Parallel GA with Unidirectional Ring Topology

First we will describe the approach GARNP and GARP that
are presented in the Algorithms 3, 4 and 5. These paral-
lelizations are based on the unidirectional ring communication
topology. In GARNP and GARP each process represents an
island and maintains a different population of size n log n. At
each migration interval (parameter MigrationInterval in the
Algorithm 3) each process selects an amount of individuals
(parameter NumMigIndividuals in the Algorithm 4) of a given
type, according to the parameter TypeEmIndividual (Algorithm
4), which can be removed or not, according to the parameter
EmPolicy (Algorithm 4), to send to their respective neighbor
(parameter P1 in Algorithm 4). The destination process in-
serts immigrant individuals into its population by replacing
individuals of a determined profile, defined by parameter
TypeImIndividual (Algorithm 4) by them. The use of a barrier
is to prevent a process from having more reproductive cycles
than another process and thus to lose stages which need to
be performed to exchange individuals. The output of GARNP is
the best result among all processes.

Algorithm 3 shows the pseudo-code of both GARNP and
GARP . The difference between the algorithms is that the
former does not execute line 1 and the latter does not execute
line 2. Algorithm 5 describes how the initial population is

generated by process 0 (used only by GARP) which constructs
a population of size p∗n log n, where p represents the number
of processes, and sends fragments with n log n individuals
to each other process. Finally, Algorithm 4 describes the
procedure for exchanging individuals in parallel.

Algorithm 3: Parallel GA with Unidirectional Ring Topol-
ogy for URD

Input: Unsigned permutation π
Output: Number of reversals for sort π
/* Only for GARP : */

1 Load initial pop. of signed permutations for π (Alg. 5);
/* Only for GARNP : */

2 Generate the initial pop. of signed permutations for π;
3 Compute fitness of the initial population;
4 count = MigrationInterval * Length(population);
5 for i = 1 to Length(π) do
6 Perform the selection and save the best solution

found;
7 count = count− 1;
8 if count==0 then
9 Send and receive individuals (Alg. 4);

10 count = MigrationInterval * Length(population);

11 MPI_Barrier;
12 Apply the crossover operator;
13 Apply the mutation operator;
14 Compute the fitness of the current population;
15 Perform replacement of the worse individuals;
16 Save the best individual;

B. Parallel GA with Complete Graph Topology

The algorithms GACNP and GACP are very similar to
GARNP and GARP , respectively. The difference between such
algorithms is the topology for the exchange of individuals that
is a complete graph or clique communication topology. The
approaches make use of Algorithms 5 and 6, and a simple
adaptation of Algorithm 3 that is given as follows: where
we read GARNP and GARP (comments before and lines 1 and
2) we will read GACNP and GACP , respectively and, instead
of calling Algorithm 4 (line 9) the procedure described in
Algorithm 6 is called to perform the necessary exchange of
individuals according to the migration policy for the complete
graph topology. The Algorithm 5 has no need of adaptation
and runs as explained in Section III-A.

IV. EXPERIMENTS AND RESULTS

The algorithms were implemented using the MPI library of
the C language. The experiments were executed on a computer
with 128GB of RAM, and two processors Xeon E5-2620 with
hyper-threading. Each processor has 6 cores with a CPU clock
rate of 2.4Ghz; thus, in this platform 24 threads were executed
simultaneously without degrading execution performance.

In order to obtain a parameter setting for GACNP , GACP ,
GARNP and GARP , which provide the best results (the minimum

Algorithm 4: Procedure for sending and receiving indi-
viduals in parallel for GARNP and GARP

1 Neighbor P1 is the process that will receive emigrant
individuals;

2 Select NumMigIndividuals of TypeEmIndividual in
current process;

3 Send selected individuals (line 2) to process P1

(MPI_Send);
4 if EmPolicy == Remove then
5 Remove selected individuals from the current process;

6 Neighbor P2 is the process that will send immigrant
individuals;

7 Receive NumMigIndividuals from process P2;
8 (MPI_Recv);
9 if TypeImIndividual == Worse then

10 Replace NumMigIndividuals worse individuals by the
received individuals;

11 else if TypeImIndividual == Random then
12 Replace NumMigIndividuals random individuals by

the received individuals;

13 else
14 Replace NumMigIndividuals similar individuals by

the received individuals of P2;

Algorithm 5: Procedure to generate the population of each
process
Input: Unsigned permutation π
Output: Each process with its population

1 p = numberProcesses;
2 Process 0 generate n log n signed permutations of π to

itself;
3 for i = 1 to p do
4 Process 0 generate n log n signed permutations of π

and send to process i (MPI_Send);

5 for i = 1 to p do
6 Process i Receive n log n signed permutations of

process 0 (MPI_Recv);

number of reversals possible for sorting permutations), ex-
haustive experiments were performed. These experiments were
conducted as follows: groups of twenty permutations contain-
ing permutations with n genes for n ∈ {20, 50, 100, 150} were
given as input. Each algorithm was executed 10 times for
each permutation in each group. To adjust each parameter
(Table I), different values were empirically estimated on a
scenario of possible good values, and random values were
set for parameters that were not yet defined through the
experiments. For example, to define the crossover parameter
according to the values estimated, the other parameters (mu-
tation, selection, etc) were fixed with arbitrary values. In the
end of the experiment the parameters values that gave the best

Algorithm 6: Procedure for sending and receiving indi-
viduals for GACNP and GACP

1 for i = 0 to numberProcesses do
2 if i is not current process then
3 Select NumMigIndividuals of TypeEmIndividual

of its population;
4 Send selected individuals to process i

(MPI_Send);

5 if EmPolicy == Remove then
6 Remove selected individuals from the current

process;

7 for i = 0 to numberProcesses do
8 if i is not current process then
9 Receive NumMigIndividuals from process i;

10 (MPI_Recv);
11 if TypeImIndividual == Worse then
12 Replace NumMigIndividuals worse

individuals by the received individuals;

13 else if TypeImIndividual == Random then
14 Replace NumMigIndividuals random

individuals by the received individuals;

15 else
16 Replace NumMigIndividuals similar

individuals by the received individuals;

TABLE I
PARAMETERS FOR THE PARALLEL ALGORITHMS

Parameter estimated values
Crossover probability 80%, 81%, · · · , 99%, 100%
Mutation probability 1%, 2%, · · · , 5%

Percentage for selection 80%, 81%, · · · , 99%, 100%
Percentage for replacement 10%, 20%, · · · , 80%, 90%

NumMigIndividuals 1,2,3,4,5
TypeEmIndividual Better, Worse, Random

EmPolicy Clone, Remove
TypeImIndividual Worse, Random, Similar
MigrationInterval 10%, 20%, · · · , 90%, 100%

TABLE II
PARAMETERS FOR THE GENETIC ALGORITHMS PARALLEL PROPOSED

Parameter GACNP GACP GARNP GARP
Crossover probability 90% 90% 70% 96%
Mutation probability 1% 1% 1% 1%
Perc. for selection 80% 90% 90% 90%

Perc. for replacement 30% 30% 40% 40%
NumMigIndividuals 4 1 3 3
TypeEmIndividual 3 3 1 2

EmPolicy 1 1 1 1
TypeImIndividual 1 2 2 1
MigrationInterval 30% 10% 40% 50%

results for GACNP , GACP , GARNP and GARP were chosen. These
parameters values are shown in Table II.

A. Experiments with One Hundred Synthetic Permutations

In order to compare properly the algorithms GAS and
GAP with the parallelizations proposed in this work, several
experiments using groups of one hundred unsigned permuta-
tions were performed in the following way:
• One hundred unsigned permutations were randomly gen-

erated for each length in the set {50, 60, · · · , 140, 150}.
• For each permutation in each set of permutations of

the same length GAS , GAP , GARP , GARNP , GACP and
GACNP were executed ten times with the same set of ran-
dom seeds (populations are generated with these seeds).

• The average of the results of these ten executions for
each algorithm was calculated. These averages represent
the result (number of reversals) for each unsigned per-
mutation of a given length.

The average results (and standard deviation) for each set
of one hundred permutations and each algorithm are shown
in Table III. Regarding processing time, Table IV shows
the speed-up (computed as the sequential processing time
divided by the time of the parallel algorithm) for each parallel
algorithm taking in consideration permutations of length 150,
that are the most difficult instances of this experiment.

V. DISCUSSION

Initially, it is worth mentioning that for the experiments the
size of the search space used for both the sequential version
(GAS) and their parallel versions was the same. The parallel
algorithms used 24 threads with their respective populations
of size n log n and GAS used a unique population of size 24∗
n log n. This allows a fair comparison regarding improvements
in accuracy obtained by parallel approaches.

At first glance, Table III shows that GARP has better re-
sults regarding the other algorithms (bold font). Nevertheless,
some of the results are very close one to another, so it
was necessary to perform a statistical comparison in order
to validate the statistical significance of these results. The
methodology proposed by Demšar [19] was applied for the
statistical comparison of algorithms, and it is as follows: first,
the Friedman test is used to test the null hypothesis that our
algorithms have the same performance; second if the latter
test rejects the null hypothesis then the Holm test (post-hoc
test) is performed, in which a control algorithm is compared
against the remaining algorithms to test the null hypothesis
that the control algorithm and one of the other algorithms
have the same performance. Both the Friedman and Holm
tests are available as a JAVA package called CONTROLTEST
(at sci2s.ugr.es/sicidm) and use as default α = 0.05 as
significance level.

In the case of the Friedman test the null hypothesis is
rejected when p-value ≤ α. In the case of the Holm test a null
hypothesis is rejected when p-value ≤ α/i, where i decreases
from (number of algorithms minus 1) until 1. For our data the
Friedman test rejected the null hypothesis, so we performed the
Holm test. Table V shows the results of the Holm test, where
bold p-values are those that reject the null hypothesis. It can

TABLE III
AVERAGE RESULTS (A) AND STANDARD DEVIATION (SD) FOR THE EXPERIMENT WITH HUNDRED SYNTHETIC PERMUTATIONS

Length GARP GARP GARNP GARNP GACP GACP GACNP GACNP GAS GAS GAP GAP

A SD A SD A SD A SD A SD A SD
50 36.38 1.138 36.46 1.172 36.39 1.15 36.39 1.156 36.46 1.193 36.4 1.152
60 44.55 1.423 44.68 1.462 44.58 1.432 44.59 1.44 44.77 1.562 44.61 1.461
70 52.72 1.524 52.9 1.572 52.74 1.543 52.76 1.543 53.01 1.668 52.81 1.553
80 61.12 1.413 61.36 1.433 61.15 1.413 61.2 1.439 61.76 1.753 61.26 1.47
90 69.53 1.574 69.88 1.607 69.59 1.575 69.58 1.562 70.53 1.924 69.79 1.61

100 77.62 1.721 78.06 1.811 77.73 1.74 77.74 1.73 79.13 2.348 78.07 1.766
110 86.29 1.641 86.73 1.72 86.34 1.658 86.38 1.684 88.07 2.234 86.81 1.696
120 94.84 1.671 95.41 1.696 94.98 1.647 95.0 1.634 97.35 2.313 95.71 1.732
130 103.58 1.806 104.25 1.868 103.73 1.821 103.73 1.805 106.55 2.549 104.74 1.91
140 112.11 2.133 112.8 2.198 112.28 2.131 112.3 2.169 115.84 2.951 113.72 2.272
150 120.97 1.59 121.78 1.572 121.08 1.577 121.16 1.532 125.43 2.125 122.96 1.658

TABLE IV
SPEED-UP FOR THE EXPERIMENT WITH PERMUTATIONS OF SIZE 150

Length GARNP GARP GACNP GACP GAP
150 11.53 11.07 10.46 7.19 13.20

be observed that GARP algorithm is the control algorithm for
all cases (permutation lengths), that is the one with the mini-
mum rank (best performance). Note that GARP has statistically
significant difference regarding GAS and GARNP for all cases;
also, GARP has statistically significant difference regarding all
algorithms in 4 cases (permutation lengths of 60, 120, 130, and
140); and finally, the GACP algorithm is the one for which in
many cases GARP has not a statistically significant difference.

Regarding the performance of running time execution (see
Table IV), GAP obtained a better speed-up than those of
all other parallel algorithms, which was already expected
since GAP does not perform exchange of individuals during
the breeding cycle as all other proposed parallelizations. In
particular, GARP which provided the best overall results in the
experiments, obtained a speed-up approximately 19% slower
than GAP . Observe that GACP is the algorithm that provides
solutions with degree of accuracy closest to GARP , however,
it requires 54% to more processing time. Thus,looking at the
cost benefit with respect to performance and accuracy it is
preferable to use GARP .

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed two approaches based on island models
for parallelizing the genetic algorithm GAS introduced in [15].
Both approaches use exchange of individuals between breed-
ing cycles in order to improve the quality of the solutions. The
first approach uses a ring communication topology through
which individuals migrate between neighbor islands. This
approach has two variants: GARNP with different populations
for each island and GARP that uses a partition of the whole
population of the standard GAS among the islands. The second
approach uses a complete graph communication topology so
that individuals migrate between all the islands and, as the
first approach, this has two variants: GACNP with different

population for each island and GACP which also distributes the
whole population of GAS among the respective islands.

Several experiments were performed using packages of
one hundred permutations randomly generated of sizes
{50, 60, · · · , 140, 150}. From the experiments, it was observed
that GARP computes the best results in terms of accuracy
providing sorting solutions with the smallest number of re-
versals and with a relatively low standard deviation; i.e., the
solutions provided at each execution of the algorithm are
always closer. The significance of these observations were
confirmed by the Holm test in most of the analyzed samples
as can be seen in Table V. Using permutations of size 150,
an additional experiment was performed for measuring the
speed-up of GARP , GARNP , GACP , GACNP , GAP over GAS .
This experiment confirmed that GAP has a speed-up when
compared to all the other algorithms as expected, since it does
not perform exchange of individuals. Despite this, the variant
GARP , which is the best parallel algorithm regarding accuracy,
has a competitive speed-up with respect to the sequential GA
(6.25) as well as to all other parallel algorithms that exchange
individuals.

The solutions obtained with the both communication topolo-
gies with different populations for each island, GARNP and
GACNP , were not satisfactory: GARNP provides better solu-
tions than GAP for inputs of length larger than 90, and
GACNP presents just a small improvement for all the inputs.
Indeed, we were expecting that having multiple populations
and also sharing the best individual around all populations
it was possible to achieve more expressive results than those
obtained without sharing information, as done by GAP . An
additional interesting fact is that creating a population for each
island does not produce good results. So, as a future work,
we are planning to study parallel evolutionary algorithms
for the general problem of rearrangement of genomes with
reversals as well as with other evolutionary operations such
as translocations. In this context, we are planing to develop
variants of the island model with more sophisticated commu-
nication topologies and policies, such as: grid, torus and trees,
and also maintaining diversity of exchange behavior in the
islands through specialized parameter setting for each island

TABLE V
RESULTS OF THE HOLM TEST FOR SETS OF HUNDREDS SYNTHETIC

PERMUTATIONS WITH LENGTHS FROM 50 TO 150.

Len. Control i Algorithm Rank P-value α/i
Algorithm

50

5 GARNP 4.025 7.1756E-4 0.01
4 GAS 4.01 8.8074E-4 0.0125

GARP 3 GAP 3.37 0.3643 0.0167
(Rank: 3.13) 2 GACP 3.235 0.6915 0.025

1 GACNP 3.23 0.7055 0.05

60

5 GAS 4.56 1.4533E-14 0.01
4 GARNP 4.27 4.2388E-11 0.0125

GARP 3 GAP 3.45 4.7199E-4 0.0167
(Rank: 2.52) 2 GACNP 3.11 0.0245 0.025

1 GACP 3.075 0.0376 0.05

70

5 GAS 4.78 3.4980E-17 0.01
4 GARNP 4.415 1.8016E-12 0.0125

GARP 3 GAP 3.475 4.7199E-4 0.0167
(Rank: 2.55) 2 GACNP 3.015 0.0788 0.025

1 GACP 2.765 0.4164 0.05

80

5 GAS 5.28 2.8665E-30 0.01
4 GARNP 4.44 1.4749E-16 0.0125

GARP 3 GAP 3.55 9.8486E-7 0.0167
(Rank: 2.255) 2 GACNP 2.925 0.0113 0.025

1 GACP 2.55 0.2649 0.05

90

5 GAS 5.665 1.6004E-43 0.01
4 GARNP 4.525 1.6551E-21 0.0125

GARP 3 GAP 3.88 1.3721E-12 0.0167
(Rank: 2.005) 2 GACP 2.475 0.0757 0.025

1 GACNP 2.45 0.0926 0.05

100

5 GAS 5.71 3.5355E-49 0.01
4 GAP 4.415 7.1344E-23 0.0125

GARP 3 GARNP 4.28 1.0030E-20 0.0167
(Rank: 1.81) 2 GACP 2.4 0.0257 0.025

1 GACNP 2.385 0.0298 0.05

110

5 GAS 5.875 1.5856E-53 0.01
4 GAP 4.46 8.8342E-24 0.0125

GARP 3 GARNP 4.255 1.7103E-20 0.0167
(Rank: 1.8) 2 GACNP 2.405 0.222 0.025

1 GACP 2.205 0.1258 0.05

120

5 GAS 5.965 1.3554E-58 0.01
4 GAP 4.8 8.3536E-32 0.0125

GARP 3 GARNP 3.98 5.7967E-18 0.0167
(Rank: 1.695) 2 GACNP 2.31 0.0201 0.025

1 GACP 2.25 0.0359 0.05

130

5 GAS 5.98 7.8780E-62 0.01
4 GAP 4.955 4.6671E-37 0.0125

GARP 3 GARNP 3.93 9.2047E-19 0.0167
(Rank: 1.59) 2 GACNP 2.305 0.0069 0.025

1 GACP 2.24 0.0140 0.05

140

5 GAS 5.985 6.2817E-63 0.01
4 GAP 5.015 4.4235E-39 0.0125

GARP 3 GARNP 3.885 1.2903E-18 0.0167
(Rank: 1.555) 2 GACNP 2.295 0.0052 0.025

1 GACP 2.265 0.0073 0.05

150

5 GAS 5.99 3.9717E-59 0.01
4 GAP 5.01 6.5309E-36 0.0125

GARP 3 GARNP 3.94 2.5308E-17 0.0167
(Rank: 1.7) 2 GACNP 2.32 0.0191 0.025

1 GACP 2.04 0.1988 0.05

as suggested in [20]. We expect that a more elaborated island
model for parallelizing GAS will outperform the algorithm
GARP . It is worth mentioning that we are developing topology
models using problems related to evolutionary metrics in order
to apply the proposed genetic mechanisms for the construction
of phylogenetic trees, not only with reversal distances but also

with other measures such as the DCJ distance [21].

ACKNOWLEDGMENT

The second and third authors are funded by a CAPES Ph.D.
scholarship and a CNPq grant, respectively.

REFERENCES

[1] S. Hannenhalli and P. A. Pevzner, “Transforming cabbage into turnip:
Polynomial algorithm for sorting signed permutations by reversals,” J.
ACM, vol. 46, no. 1, pp. 1–27, Jan. 1999.

[2] P. Berman and S. Hannenhalli, Fast sorting by reversal. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 168–185.

[3] D. A. Bader, B. M. Moret, and M. Yan, “A linear-time algorithm
for computing inversion distance between signed permutations with an
experimental study,” Journal of Computational Biology, vol. 8, no. 5,
pp. 483–491, 2001.

[4] A. Caprara, “Sorting by reversals is difficult,” in Proceedings of the first
annual international conference on Computational molecular biology.
ACM, 1997, pp. 75–83.

[5] J. Kececioglu and D. Sankoff, Exact and approximation algorithms for
the inversion distance between two chromosomes. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 87–105.

[6] V. Bafna and P. Pevzner, “Genome rearrangements and sorting by
reversals,” in Proceedings of the 1993 IEEE 34th Annual Foundations
of Computer Science. IEEE Computer Society, 1993, pp. 148–157.

[7] D. A. Christie, “A 3/2-approximation algorithm for sorting by reversals,”
in Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 1998, pp.
244–252.

[8] P. Berman, S. Hannenhalli, and M. Karpinski, 1.375-Approximation
Algorithm for Sorting by Reversals. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 200–210.

[9] J. L. Soncco-Álvarez and M. Ayala-Rincón, “A genetic approach with a
simple fitness function for sorting unsigned permutations by reversals,”
in Computing Congress (CCC), 2012 7th Colombian. IEEE, 2012, pp.
1–6.

[10] J. L. Soncco-Álvarez, G. M. Almeida, J. Becker, and M. Ayala-Rincón,
“Parallelization and virtualization of genetic algorithms for sorting per-
mutations by reversals,” in Nature and Biologically Inspired Computing
(NaBIC), 2013 World Congress on. IEEE, 2013, pp. 29–35.

[11] J. Kececioglu and D. Sankoff, “Exact and approximation algorithms for
the inversion distance between two chromosomes,” in Annual Sympo-
sium on Combinatorial Pattern Matching. Springer, 1993, pp. 87–105.

[12] V. Bafna and P. A. Pevzner, “Genome rearrangements and sorting by
reversals,” SIAM Journal on Computing, vol. 25, no. 2, pp. 272–289,
1996.

[13] T. A. Lima and M. Ayala-Rincón, “On the average number of
reversals needed to sort signed permutations,” 2016, available ay-
ala.mat.unb.br/publications.html.

[14] S. Hannenhalli and P. Pevzner, “Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals,” in
Proceedings of the twenty-seventh annual ACM symposium on Theory
of computing. ACM, 1995, pp. 178–189.

[15] A. Auyeung and A. Abraham, “Estimating genome reversal distance by
genetic algorithm,” in Evolutionary Computation, 2003. CEC’03. The
2003 Congress on, vol. 2. IEEE, 2003, pp. 1157–1161.

[16] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs
paralleles, reseaux et systems repartis, vol. 10, no. 2, pp. 141–171,
1998.

[17] D. Sudholt, Springer Handbook of Computational Intelligence. Springer
Berlin Heidelberg, 2015, ch. Parallel Evolutionary Algorithms, pp. 929–
959.

[18] S. Sivanandam and S. Deepa, Introduction to genetic algorithms.
Springer, 2007.

[19] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, no. Jan, pp. 1–30, 2006.

[20] F. Herrera, M. Lozano, and C. Moraga, “Hybrid distributed real-coded
genetic algorithms,” in International Conference on Parallel Problem
Solving from Nature. Springer, 1998, pp. 603–612.

[21] S. Yancopoulos, O. Attie, and R. Friedberg, “Efficient sorting of ge-
nomic permutations by translocation, inversion and block interchange,”
Bioinformatics, vol. 21, no. 16, pp. 3340–3346, 2005.

