
Heterogeneous Parallel Island Models
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Abstract—Homogeneous Parallel Island Models (HoPIMs) run
the same bio-inspired algorithm (BA) in all islands. Several
communication topologies and migration policies have been fine-
tuned in such models, speeding up and providing better quality
solutions than sequential BAs for different case studies. This work
selects four HoPIMs that successfully ran a genetic algorithm
(GA) in all their islands. Furthermore, it proposes and studies the
performance of heterogeneous versions of such models (HePIMs)
that run four different BAs in their islands, namely, GA, double-
point crossover GA, Differential Evolution, and Particle Swarm
Optimization. HePIMs aim to maintain population diversity
covering the space of solutions and reducing the overlap between
islands. The NP-hard evolutionary reversal distance problem
is addressed with HePIMs verifying their ability to compute
accurate solutions and outperforming HoPIMs.

I. INTRODUCTION

Evolutionary computing relies on the evolution of can-
didate solutions over a finite number of temporal steps to
obtain accurate solutions for complex problems. Bio-inspired
algorithms (BAs) have been applied to solve search and
optimization problems in different domains where finding
exact solutions is difficult or impossible, applying traditional
approaches such as mathematical programming. BAs’ fun-
damental principle uses a constructive method to obtain an
initial feasible population and a local search technique to
improve the population individuals (solutions). In BAs, the
population evolves according to specified rules that promote
information exchange between individuals. Such approaches
may require a prohibitive amount of computing resources,
and thus, a variety of issues are studied to design efficient
algorithms. With this aim in mind, advances are continuously
being achieved by developing hybrid algorithms. This work
focus on improvements using parallel island models (PIM) that
partition the population among their islands (processors) and
simultaneously run BAs in them. Each island evolves its local
population running its BA. Furthermore, interactions between
islands are organized through a communication topology, and
a migration strategy applied periodically, aiming to improve
solutions by sharing individuals.

This paper extends previous work on homogeneous PIMs
(HoPIMs) (that apply the same BA in all their islands)
[1] allowing running different BAs in their islands, known
as heterogeneous PIMs (HePIMs). Islands of the proposed
architectures run four BAs: simple Genetic Algorithm (GA),
double-point crossover GA (GAD), Differential Evolution (DE),
and self-adjusting Particle Swarm Optimization (PSO) (see
e.g., [2], [3], and [4]). Different aspects influence the per-

formance provided by the PIMs. Since we focus on BAs
with structured panmictic populations running in parallel,
we need to address decisive implementation issues such as
communication synchronism, communication frequency, com-
munication topology, and selection of migrants. The communi-
cation synchronism defines whether the migration process oc-
curs synchronous or asynchronous; communication frequency
establishes the interval between migrations; communication
topology is responsible for organizing the neighborhood of
each island, and; selection of migrants defines the class of
individuals to be shared between islands.

Our case study is the unsigned reversal distance problem
(URD), a well-known NP-hard problem [5], [6]. In compar-
ative genomics, rearrangement by reversals is a relevant oper-
ation to estimate the evolutionary distance between genomes.
Computing the minimum number of reversals to obtain a
genome from another is known as the reversal distance (RD)
problem [7]. The complexity of the RD problem depends on
how the genes are abstracted into the genome. When genes
are not orientated, the problem corresponds to URD.
Main contributions.

• Synchronous and asynchronous HoPIMs are designed from a
static and a dynamic topology running the four BAs in their
islands: GA, GAD, DE, and PSO. The experiments ratify that,
independently of the bio-inspired algorithm, HoPIMs with
breeding-cycle and migration parameters accurately calibrated
always outperform their sequential versions. Furthermore, the
HoPIM running DE provides the most accurate results.

• Synchronous and asynchronous HePIMs are designed, which
run the four BAs in their islands and have identical com-
munication topologies than the HoPIMs. After calibration of
the migration parameters, experiments with these HePIMs
demonstrate that the successful experiences of the best adapted
bio-inspired algorithms in each island are propagated towards
all other islands. Such propagation allows for providing very
competitive outputs. Furthermore, the solutions obtained with
each HePIM outperforms the average results obtained by the
group of islands in the model running the same BA. Also,
HePIMs outperform the results of HoPIMs running GA, GAD,
and PSO. In addition, the HePIMs provide competitive results
regarding HoPIMs applying DE. These observations make it
evident that HePIMs may not necessarily deliver better results
than HoPIMs, in contrast to recent works (e.g., [8], [9]).
However, they show that the diversity and migration policy
of HePIMs assure the propagation of the best evolutionary
experiences among all islands in such architectures.



Design and experiments are performed over readily avail-
able parallel hardware (as multiprocessors). The significance
of the designed models is validated through statistical tests.
Organization. Sec. II presents the background on PIMs, the
case study, and discusses the four applied BAs and related
work. Sec. III introduces the HePIMs explaining how different
BAs are distributed on their islands and their communication
topologies. Then, Sec. IV presents experiments and discusses
accuracy results and statistical analysis. Finally, Sec. V con-
cludes and proposes future work. Source and data used in the
experiments are available at http://genoma.cic.unb.br.

II. BACKGROUND

A. Parallel island model (PIM)

PIMs, initially proposed for GAs [10], are highly suited to
run other BAs to increase population diversity. In addition
to improving run-time, it is always expected such models
improve the quality of sequential GAs’ solutions.

The population in a PIM is partitioned into its islands
that evolve, executing their BAs in parallel. The islands are
connected through a given topology, over which individuals
are exchanged through migration. The exchange follows a
migration policy that is an essential strategy for evolution
in the global context and positively impacts the quality of
solutions when well-adjusted. PIMs that run the same BA in all
their islands are homogeneous, while those that run different
BAs in their islands are heterogeneous.

Aspects under the developer’s responsibility that determine
a PIM’s architecture include the number of islands, the com-
munication topology, and the BAs applied in each island,
[11]. The topology is responsible for establishing islands’
neighborhoods. It is static if the connections remain unchanged
throughout the PIM execution, whereas it is dynamic if there
is a change during the evolutionary process. In addition, it
is interesting to define whether individuals exchange will
happens uni- or bi-directionally. There is a variety of schemes
available to implement a topology (e.g., [9], [1], [12]). Fig. 2
(a) shows an example of a static bi-directional tree topology.
The vertices represent the islands with their respective BAs,
while the edges the connections between them.

In addition to breeding-cycle parameters of their BAs, PIMs
include migration parameters briefly described below.

• Migration Interval (MI): percentage of iterations of the evo-
lutionary process (generations) after which the migration
process is repeated. This percentage defines the migration
interval. Before each generation in which the migration pro-
cess occurs, each island separately evolves its population by
MI × maxIt generations, where maxIt is the total number of
iterations performed by each BA.

• Individuals number (IN): number of individuals emigrating
from each island.

• Emigration Policy (EP): defines whether individuals are
cloned or removed in the local island when they emigrate
to the target island.

• Emigrant Individuals (EMI): determines the type of individ-
uals selected for emigration among: 1. best, 2. worst, and 3.
random.

• Immigrant Individuals (IMI): defines the type of individuals
in the target island replaced by immigrants among: 1. worst,
2. random, and 3. similar. Similar individuals are individuals
with the same fitness rank as the immigrants.

B. Case-study

Computing the evolutionary distance between organisms by
comparing their genomes has become possible through global
rearrangements where the chromosome genes are rearranged
using some evolutionary operation. Here, the evolutionary
distance between organisms containing a single chromosome
is computed as the minimum number of reversals necessary
to convert a genome into the other.

A genome containing n genes is represented as a permuta-
tion π = (π1, π2, ..., πn), where 1 ≤ i, πi ≤ n; i.e., a bijection
on {1, · · · , n}. The reversal operation, denoted as ρj,k, for 1 ≤
j ≤ k ≤ n, inverts contiguous elements between πj and πk
transforming π into π′ = (· · · , πj−1, πk, · · · , πj , πk+1, · · · ).
There are two types of permutations: signed and unsigned.
When the orientation of the genes inside the genome is taken,
the genome is seen as a signed permutation. Thus, each gene
has a positive or negative sign according to its orientation
within the genome. Computing the minimum number of re-
versals between two signed permutations is called the signed
reversal distance (SRD) problem, and it belongs to P [13]. On
the other hand, if the genes have no orientation, the genome is
represented as an unsigned permutation. Computing the mini-
mum reversal distance between two unsigned permutations is
called the unsigned reversal distance (URD) problem, which is
a well-known NP-hard problem [5]. In the BAs used here, the
fitness is computed as the reversal distance of signed genomes
obtained by randomly orienting the genes in the genome.

C. Local Evolutionary Engines — bio-inspired Algorithms

The four BAs were chosen because they are optimization
benchmarks that offer evolutionary mechanisms that provide
different adaptability features.
• Simple Genetic Algorithm (GA): is inspired by the principles

of natural evolution and was developed by J. H. Holland in
the 1970s [2]. The GA evolves the local population through
the breeding cycle parameters consisting of the percentages of
selection and replacement, and the probability of application
of mutation and crossover. For the breeding cycle, the GA
selects the best parents and applies one point crossover (Fig.
1 (a)) to produce offspring. Then, the descendants replace the
worst individuals in the current population.

• Double-point Crossover Genetic Algorithm (GAD): is a variant
from the GA in which the crossover uses the technique
presented in Fig. 1 (b), and the replacement of individuals
by descendants in the current population randomly selects
the individuals to be replaced.

• Differential Evolution (DE): is a optimization method for
multidimensional real value functions that use a population

http://genoma.cic.unb.br


of individual solutions, proposed by Storn and Price [3]. The
mutation factor FM , and the probability of crossover PC
guide the evolutionary process. In the mutation, three distinct
individuals Iα, Iβ , and Iγ are randomly selected from the
population. Then, Iα suffers a disturbance resulting from the
vector difference between Iβ and Iγ multiplied by FM , giving
rise to a new mutated individual In = Iα + FM × (Iβ − Iγ).
At each iteration, a new population is generated, replacing
individuals with the worst fitness by mutants.

• Self-adjusting Particle Swarm Optimization (PSO): PSO is
inspired by the behavior of social organisms in groups and
was introduced to address continuous domain problems [4].
We use the self-adaptive PSO proposed in [14], where the
weight of inertia (momentum), w, and the individual and
global acceleration coefficients, c1 and c2 are self-tuning
during the search process. Particles in PSO are points, xi =
(xi1, · · · , xin), in an n-dimensional space. Particles motion
is given by velocity vectors vi = (vi1, · · · , vin). Each particle
remembers its best position, pbesti. The best of all particle
positions, gbest, is maintained by the algorithm. pbesti and
gbest are used to evolve particles. The velocity vector, vk+1

i

for the ith-particle in the (k + 1)th iteration is computed as:

vk+1
ij = wki · vkij + ck1i · rand1ij · (pbestkij − xkij)+

ck2i · rand2ij · (gbestkj − xkij)
(1)

In Eq. (1), w introduces friction into the particles motion,
reducing inertial velocity; c1 and c2 are the individual and
global acceleration coefficients that influence the maximum
step size a particle can take and, rand1i and rand2i are random
number vectors generated at each iteration, (0 ≤ rand ≤ 1).
Particle next positions are computed as: xk+1

i = xki + vk+1
i .

PSO and DE are known to be suitable for solving real
value function problems. For adapting the BAs to the URD
problem, each particle/individual in the swarm/population is
associated with a signed permutation randomly constructed
from the unsigned permutation provided as input. For GA
and GAD, the orientation of the genes in each individual is
randomly generated as ±1; for PSO and DE, the orientation
is randomly generated as a value in the closed interval [0, 1],
being values smaller than and greater than or equal to 0.5
interpreted as negative and positive orientations, respectively.
For applying PSO and DE, if this continuous representation of
the orientation of an individual’s gene gets outside the interval
[0, 1], a correct orientation is randomly generated. The fitness
of each particle/individual is computed using Bader et al. [15]
linear approach to solve the SRD problem.

D. Related Work

Bianchini and Brown [16] proposed a HePIM that connects
islands by ring and torus topologies. HePIMs and HoPIMs
were applied to the task map scheduling problem, for which
the former PIMs found the best solutions. In addition, they
observed that adding more islands is more advantageous than
increasing population size. Different HePIMs were proposed
by Lin et al. in [17], considering several migration strategies

Fig. 1. Variants of crossing operators.

and topologies to avoid premature convergence and addressing
the graph partitioning problem. Lin et al. showed that the
sequential GAs do not equate to 25-island PIMs, where good
individuals replace the worst individuals on target islands.
Furthermore, exchanging individuals based on fitness-based
population similarity instead of a static connection topology
get better results without any speed degradation.

Izzo et al. [18] proposed a HePIM from variations of the
differential evolution algorithm using asynchronous migration.
Such migration was justified because it is more intuitive
and suitable for distributed computing over TCP/IP, where
resources might become available/unavailable at any time. The
proposed PIMs obtained better performance and accuracy than
their sequential versions. Gong and Fukunaga [19] proposed a
GA based PIM that randomly selects different parameters for
each processor. By having a sufficient number of processors,
it is expected that some of the processors will end up being
assigned parameters that perform well on a given problem.

Duarte et al. [8] proposed a migration policy for five-island
HePIMs with target island defined by attractiveness. Islands’
attractiveness is based on their solutions’ quality. This model
was improved in [9], inspired by the natural phenomenon
known as stigmergy [20], adjusting how attractiveness and the
weights of the islands’ connections are computed. Experiments
were conducted over the fifteen problems given in [21].

In [22], we proposed HoPIMs for a sequential GA intro-
duced in [23] to solve unsigned translocation distance problem.
These HoPIMs used ring and complete graph topologies mi-
grating at each generation but reusing parameters calibrated for
the sequential GA. Such PIMs’ accuracy outperformed the GA
after careful calibration of the migration and breeding cycle
parameters and exploration of other static topologies such as
torus, complete graph, tree, and net and migration dynamics
that consider individuals’ characteristics [24], [25]. Further, in
[1], we analyzed synchronous HoPIMs for three BAs: GA, PSO
and Social Spider Algorithm (SSA). Experiments for smaller
populations (than those used in this paper) showed that static
HoPIMs from the PSO output the best solutions in general,
and PIMs from the GA are competitive. The HoPIMs for SSA
presented the worst solutions but the best speed-ups.

Similar algorithmic approaches appear in the context of
solving multiobjective optimization problems (MOP). For
instance, in [26], Zang et al., introduced a multi-swarm
optimizer that handles each objective function of a MOP
with a different slave swarm. Simultaneously, a master swarm



covers gaps among non-dominated optima by using a local
multiobjective PSO algorithm. More recently, in [27], Gong
et al. proposed a framework to tackle dynamic interval MOPs
that handles a cooperative co-evolutionary optimization based
on interval similarity. Dynamic interval MOPs are MOPs with
changing ranges of interval parameters in at least one objec-
tive or constraint over time. The framework divides decision
variables into two groups according to the interval similarity
and interval parameters. Then, two subpopulations are used to
optimize decision variables in the two groups cooperatively.
Furthermore, Xu et al. proposed a model with EAs that uses
two subpopulations to solve dynamic interval multiobjective
problems [28]. In [29], Hashimoto et al. proposed a PIM to
solve multi-task problems. The number of islands and tasks
is the same, and each island is responsible for evaluating a
single objective. Migration is performed periodically where a
pre-specified number of migrant individuals are selected and
removed at random on each local island. The worst individuals
are replaced, and immigrants have their fitness values set as
the worst, assuming that feasible solutions for a task have great
chances of being unsuitable for another objective. Experiments
were carried out with two objective problems obtaining similar
or better results than the sequential model, mainly when
applying small migration intervals. An interesting potential
application of our HePIMs is the treatment of multiobjective
problems. For such applications, each island may take care of
the optimization of a different objective function.

III. COMMUNICATION TOPOLOGIES

A static and a dynamic topology that successfully addressed
URD in [1] are selected. The static topology is the bi-
directional binary tree topology, and the dynamic topology
is the potentially complete graph. The island communication
dynamism is acquired by exploring diversity and quality into
each island, given by fitness variance and average metrics.
Variance measures islands’ diversity: high variance represents
high individuals’ diversity, improving the chances of evolution
into islands. Fitness average measures the quality of island
populations. According to such metrics, the islands are ranked
as good, bad, and medium. Migrations exchange individuals
between good and bad islands, and medium and medium
islands only (for short, gbmm).
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Fig. 2. Communication topologies and distribution of BAs among the islands
for heterogeneous PIMs: (a) static binarytree, (b) dynamic complete graph.

IV. EXPERIMENTS AND ANALYSIS OF ACCURACY

All PIMs were implemented using the MPI library of the
C language in the Linux operating system. The experiments

TABLE I
ESTIMATED VALUES FOR THE PARAMETERS

Parameter Estimated values

GA and GAD

crossover 0.02, 0.04, · · · , 0.98, 1.0
mutation 0.01, 0.011, · · · , 0.019, 0.02
selection 2%, 4%, · · · , 98%, 100%

replacement 2%, 4%, · · · , 98%, 100%

DE
PC 0.02, 0.04, · · · , 0.98, 1.0
FM 1%, 1.1%, · · · , 1.9%, 2%

Migration

IN 1,2,3,4,5,6,7,8,9,10,11,12,13
EMI 1=Best, 2=Worst, 3=Random
EP 1=Clone, 2=Remove
IMI 1=Worst, 2=Random, 3=Similar
MI 2%, 4%, · · · , 98%, 100%

were executed on a computer using two Xeon E5-2620 2.4
GHz six core processors with hyper-threading.

To compare the performance of the models, sequential ver-
sions of GA, GAD, DE and PSO with population/ swarm of size
24n log n and breeding cycles fixed as n were implemented.
Posteriorly, 12-island synchronous and asynchronous homo-
geneous PIMs evolving native individuals through the BAs:
GA, GAD, DE and PSO from the communication topologies
showed in Fig. 2 were designed. The notation for these models
is exemplified by PGAgbmm12S and PDETr12A. The superscripts indicate
that these models use the BAs GA and DE, respectively; the
subscripts prefixes gbmm and tree that they use the static tree
and dynamic complete graph topology (gbmm), respectively;
and, the subscript suffixes 12S and 12A, the number of islands
and whether the model is synchronous or asynchronous.

The four HePIMs, denoted as PHet
Tr12S and PHet

Tr12S, and PHet
gbmm12S

and PHet
gbmm12A, were designed over the communication topologies

with the distribution of BAs given in Fig. 2. The connections
between the islands in Fig. 2 (b) are generated at run-time
before each migration (see Section III).

A. Parameter Setup

The sequential BAs and PIMs were submitted to parameter
tuning adopting the “taxonomy T1” in [30]. The calibration ap-
proach gives suitable parameters fixed during the experiment’s
evolutionary process. Table I presents the ranges of parameter
values. For those involving percentages, the tested values range
between 2% and 100%. For those involving probability, the
rate was set from 0.02 to 1.0, and for the mutation parameter
from 0.01 to 0.02. For the DE FM parameter, the range from
1% to 2% was tested because values above 2% degrade the
quality of solutions. Remember that in PSO, the parameters to
guide the particles in the search space are self-adjusting.

In the setup, we used groups of twenty n-gene permutations
for n ∈ {50, 60, . . . , 140, 150}. Experiments were separately
performed for sequential BAs, HoPIMs and HePIMs. Firstly,
we calibrate parameters for the sequential BAs and HoPIMs;
each parameter reference value was submitted to evaluation
and those values that provided the best solutions were selected,
see Tables II and III. The HePIMs inherited the HoPIMs
parameter values related to the evolutionary process, and only
the migration parameters were calibrated, see Table IV.



TABLE II
PARAMETER SETTINGS FOR GA, GAD, AND ASSOCIATED HOPIMS.

PGA PGAD
Parameter GA Tr12S Tr12A gbmm12S gbmm12A GAD Tr12S Tr12A gbmm12S gbmm12A

crossover .90 .96 .98 .98 .96 .92 .94 .98 .98 .98
mutation .02 .01 .015 .01 .011 .01 .01 .01 .01 .01
selection 60% 98% 92% 78% 94% 98% 96% 98% 94% 94%

replacement 60% 50% 70% 50% 70% 90% 80% 80% 90% 90%
IN 3 9 2 5 2 12 9 5

EMI 1 1 3 1 1 1 1 1
EP 2 2 1 2 2 2 1 1
IMI 2 1 2 1 1 1 1 1
MI 56% 30% 30% 30% 16% 14% 14% 12%

TABLE III
PARAMETER SETTINGS FOR DE, PSO, AND ASSOCIATED HOPIMS.

PDE PPSO
Parameter DE Tr12S Tr12A gbmm12S gbmm12A Tr12S Tr12A gbmm12S gbmm12A

PC .74 .68 .72 .70 .78
FM 1% 1% 1.4% 1% 1%
IN 1 3 2 5 5 6 22 5

EMI 1 1 1 1 3 3 1 3
EP 2 1 1 2 2 2 1 2
IMI 1 1 1 1 1 1 1 2
MI 26% 14% 10% 12% 10% 12% 10% 22%

TABLE IV
PARAMETER SETTINGS FOR HEPIMS.

Parameter PHet
Tr12S P

Het
Tr12A P

Het
gbmm12S P

Het
gbmm12A

IN 2 3 2 6
EMI 2 1 1 3
EP 2 2 2 1
IMI 3 3 3 3
MI 26% 10% 32% 14%

B. Analysis of Accuracy

Packages of one hundred unsigned permutations were
randomly generated containing n genes of lengths n ∈
{100, 110, . . . , 150}. Parameters were taken from Tables II,
III and IV. For each permutation, the PIMs and the sequential
versions were executed ten times starting from the same
population for all permutations of the same length. Then, the
averages of the ten results for each permutation and algorithm
were calculated. These averages represent the number of
reversals for each unsigned permutation.

The improvement of PIMs’ accuracy is analyzed relative to
the associated sequential BAs. The radar chart in Fig. 3 shows
the accuracy of DE, GA, GAD and PSO. DE obtained the most
accurate results while PSO provided the worst results. GAD and
GA output competitive results, being GAD the second-placed
BAs. The six radii of the radar chart represent the accuracy
for inputs of size 100, 110 to 150. Also, notice that the ranges
and scales in each radius of the radar chart are different.

C. Accuracy for HoPIMs

Radar charts in Figs. 4 and 5 show how in all cases, the four
HoPIMs implemented with each BA improve the accuracy of
their sequential versions (see the smaller radar charts). Also,
as expected the best and the worst accuracies were obtained
by HoPIMs applying DE and PSO, respectively, as happens for
the sequential BAs (see the ranges and scales in Fig. 4). This
is not surprising, since PSO does not adapts well to discrete
optimization problems as GA and GAD do, and DE adapts well
to both continuous and discrete optimization problems and

explores efficiently large search spaces as the one of URD. In
Fig. 5, the ranges and scales in the radii of the charts are the
same. An interesting observation is that the improvement of
accuracy obtained by HoPIMs with GA is so expressive that the
accuracy results for HoPIMs using GA surpassed substantially
the results of HoPIMs using GAD. This contrasts with the fact
that GAD gave better accuracy than GA (Fig. 3).

100

110120
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140 150

82 .48

91 .77100 .75

Fig. 3. Accuracy of the sequential BAs DE, GA, GAD and PSO.

D. Accuracy for HePIMs

Fig. 6 shows the accuracy for the asynchronous HePIM
PHet

Tr12A. The chart on the left shows that the accuracy results
are very competitive regarding the four HoPIMs with the
same architecture (PDETr12A, PGATr12A, PGADTr12A , and PPSOTr12A ) being only
surpassed by PDETr12A. The chart on the right shows (dashed lines)
the best final average results obtained by each set of three
islands in PHet

Tr12A that perform the same BA. From this chart,
it is clear that the migration policy of the PHet

Tr12A architecture
successfully propagates the results obtained in all islands.
Indeed, the average results in islands running the BAs GA,
GAD and PSO outperform the accuracy obtained with their
respective HoPIMs. These final average results are very close
to those given by the best HoPIM, PDETr12A, and by PHet

Tr12A.
The radar charts in Fig. 7 show the accuracy for the

asynchronous HePIM PHet
gbmm12A. The chart on the left shows that

the accuracy results of PHet
gbmm12A outperform those of all HoPIMs

with the same architecture except PDEgbmm12A but computing
results very close to PDEgbmm12A. The chart on the right, which
uses different ranges in its radii, compares the quality of results
obtained by PHet

gbmm12A and the final average results of the four
sets of islands running the same BA inside PHet

gbmm12A. Once again,
it is clear that the migration policy combined with the diversity
promoted by the application of different BAs in the islands
of the PHet

gbmm12A architecture succeeds in sharing good quality
information among all islands giving to this HePIM the ability
to find good quality solutions. In the right chart, one observes
that the set of three islands running PSO finished with average
results that have better quality than those computed by the



100

110120

130

140 150

77 .13

85 .5293 .93

1

111 .32 119 .68

(a)

100

110120

130

140 150

77 .57

86 .0394 .49

(b)

100

110120

130

140 150

0 .8 80 .82

89 .998 .98

108 .

117 .35 126 .45

(c)

100

110120

130

140 150

82 .48

91 .77100 .75

(d)

Fig. 4. Accuracy of (a) DE HoPIMs and (b) relative to DE, (c) PSO HoPIMs and (d) relative to PSO.

100

110120

130

140 150

7 .53 77 .61 77 .68 77 .76 77 .84

86 18

86 .27

86 .35

86 .44

86 .52

94 75

94 .86

94 .96

95 .07

95 .18

1103 .57103 .72103 .86104 .0

112 .01

112 .17

112 .34

112 .5

112 .66

120 .82

121 .01

121 .21

121 .4

(a)

121 .6

100

110120

130

140 150

79 .05

88 .197 .3

(b)

100

110120

130

140 150

77 .84

86 .5295 .18

(c)

100

110120

130

140 150

79 .05

88 .197 .3

106 .67

115 .75 125 .35

(d)

Fig. 5. Accuracy of: (a) GA HoPIMs and (b) relative to GA, (c) GAD HoPIMs and (d) relative to GAD.
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Fig. 6. (a) Accuracy of PHet
Tr12Aand related HoPIMs; (b) Accuracy of PHet

Tr12Aand average results of each set of islands in PHet
Tr12A running the same BA.

sets of islands executing GA and GAD, swapping the quality
performance observed in the respective HoPIMs.

Radar charts in Fig. 8 compare the quality of the results
obtained by the synchronous architectures PHet

Tr12S and PHet
gbmm12S

with HoPIMs with the same architecture. In both cases, the
accuracy of the heterogeneous models is better than those of
the corresponding homogeneous models using BAs GA, GAD
and PSO (in this order) and very close to the results obtained

by the best homogeneous models that are PDETr12S and PDEgbmm12S,
respectively. Also, the results provided by PHet

Tr12S and PHet
gbmm12S

are indistinguishable (the ranges and scales in the radii of the
charts in Fig. 8 are the same). For these synchronous models,
the average best accuracy of the four sets of islands running
the same BA are equal to the output of the models. This
is explained because in the synchronous process, even with
the same migration interval as in asynchronous models, the
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Fig. 7. (a) Accuracy of PHet
gbmm12Aand related HoPIMs; (b) Accuracy of PHet

gbmm12Aand average results of each set of islands in PHet
gbmm12A running the same BA.

synchrony of evolution (i.e., all islands perform synchronously
one generation of their BA) makes that island evolve with less
diversity than in the asynchronous models.

The chart in Fig. 9 shows the accuracy of the four HePIMs:
PHet

gbmm12A gives the best while PHet
Tr12A the worst accuracy. Models

PHet
Tr12S and PHet

gbmm12S compute very similar quality outputs.

E. Statistical Analysis

Statistical tests were performed to validate the PIMs exper-
iments with the significance level used in the tests of 95%
represented in the tests as α = 0.05. The sample of each
PIM is the set of 100 outputs from the inputs used in Section
IV-B. First, the Friedman test was applied to find the control
algorithm. Subsequently, Holm’s test (Post-hoc test) is applied
to test the null hypothesis that the performance of the control
algorithm is the same in relation to the remaining algorithms.
This technique is proposed in [31] (also see [32] and [33]).
The tests use PDEgbmm12A as the control algorithm for all inputs.

V. CONCLUSIONS AND FUTURE WORK

Synchronous and asynchronous homogeneous and heteroge-
neous models were proposed from four BAs: GA, GAD, PSO
and DE using a static binary tree topology and a dynamic
topology based on diversity and population quality.

Our experiments, evaluated statistically, showed that in HeP-
IMs, island diversity and migration policy are effective enough
to reach quality results that, in general, outperform the quality
of HoPIMs. However, they also show an exception: the HoPIM
applying DE, which offered better efficiency, delivering better
solutions for most input sets. Our experiments showed that
the general superiority of HePIMs over HoPIMs could be
guaranteed through careful calibration of the migration param-
eters to assure the efficient exploration and dissemination of
the variety of individuals among islands that run the different
BAs. These observations let us infer that the groups of islands
using GA, GAD and PSO significantly improve the quality of
their individuals driven by the genetic material disseminated
by immigrants proceeding from islands using DE.

The diversity inherent to the asynchronous heterogeneous
dynamic model was relevant in obtaining the best results
among all HePIMs. Like other PIMs, it promotes diversity
through a dynamic communication topology between islands
and the heterogeneous application of different BAs in their
islands. But in addition to these two factors, the asynchronous
evolution, guided by different BAs in groups of islands, incre-
ments diversity improving its native individuals. In contrast,
synchronous evolution restricts diversity and, consequently,
impoverishes the results’ accuracy.

An important observation is a contrast regarding the evo-
lutionary process. Indeed, the experiments showed that syn-
chronous models achieved the best results with HoPIMs,
whereas asynchronous HePIMs showed better exploration of
the search space and consequently provided better solutions.

Future work will implement flexible HePIMs promoting
an island-localized migration process; each island could have
its migration parameters, including the BA, to be executed.
Current work explores the design of HePIMs that detect the
BA that adapts better to the optimization objectives. Then each
island runs the best-adapted BA to deal with its objective.
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