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Abstract This work explores migration policies over different communication
topologies in synchronous and asynchronous parallel island models used to im-
prove speed-up and accuracy in genetic algorithms. This paper aims to explain
the adequacy of such models from the a general perspective, trying to answer
questions such as which is the best manner to implement genetic algorithms in
parallel island models. The quality of the solutions and the running time provided
by parallel island models are evaluated from the perspective of 4 different NP-
hard problems: reversal and translocation evolutionary distance, task mapping
and scheduling and, N -Queens. The results show that no model provides better
speed-up and accuracy in general. However, the experiments make evident that
after parameters tuning of the breeding cycle and island migration parameters, all
parallel models reach not only good speed-ups but also more accurate solutions
than the sequential genetic algorithm. In general, synchronous models provide the
best solutions while asynchronous models deliver the best run-times, but there are
scenarios where variations occur.
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1 Introduction

Parallel islands models (PIMs) have received considerable attention because of
their potential to increase speed-up and accuracy [48], [57], [62]. The communi-
cation between islands is established by a migration topology. The strategy is to
map islands in processors, such that each island runs an evolutionary algorithm
(EA) and occasionally shares genetic material with other islands [64]. A simple
form of sharing is to send a copy of an individual from a local island to another
target island through a process called migration. The movement of individuals is
defined by a migration policy that involves parameters that need to be carefully
calibrated and that are related to considerations such as: number of individuals
that are sent (emigrants) and received (immigrants) from a local to a target island;
migration interval or generations between one migration and another; emigration
policy that defines whether emigrating individuals are just moved or cloned and
sent to a target island, among others.

Different PIMs architectures determined by their migration topology are stud-
ied considering synchronous and asynchronous migration between their islands. In
the former architectures, islands evolve simultaneously, while in the latter ones,
the migration is not related to the state of evolution in all the islands. The asyn-
chronous behavior is typically found in migration in nature, where different en-
vironmental factors are responsible for the differences in the speed of evolution.
Also, topologies can be static or dynamic. In a static topology the communication
between islands is specified at the beginning of execution and remains unchanged,
whereas in a dynamic topology it can change.

This work aims to provide a robust feedback about the adequacy of migration
policies in PIMs from the Genetic Algorithm (GA). The GA is a metaheuristic
inspired by Charles Darwin’s theory of natural evolution that has been success-
fully applied in many optimization and machine learning problems. Implementing
PIMs using GA is not difficult, since GAs are naturally prone to parallelism [8],
however, the difficulty lies in how to manipulate the breeding cycles and migration
parameters to extract accuracy from the implementations.

Our research consists of investigating different PIMs in the literature that were
enriched with synchronous and asynchronous migration configurations, consider-
ing a variety of scenarios obtained when we modify the migration parameters on
the perspective of run-time and accuracy. The implemented PIMs use 12 and 24
islands for a variety of static and dynamic topologies. To guide our investigation
four case-studies related with NP-hard problems are used: unsigned reversal dis-
tance (URD), unsigned translocation distance (UTD), task mapping and schedul-
ing (TMP), and N -Queens. In the experiments phase, several input sets are used
for each case-study.

The feedback obtained from the experiments does not point to a generic model
that offers better speed-up and/or better accuracy for all case-studies. After pa-
rameters tuning, all PIMs provided better solutions than the sequential GA, being
the best results obtained by synchronous models except for the N -Queens prob-
lem. The speed-up is strongly influenced by the used parameters; indeed, the
results show that asynchronous PIMs present better speed-ups than synchronous
models, but this is not a rule. Also, in most cases 24-island models process in-
puts faster than their 12-island versions, but this is not the rule in PIMs imple-
mented for the N -Queens problem and asynchronous PIMs for TMP. From the
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point of view of accuracy, synchronous static 12-island models present, in general,
the most competitive solutions for URD, while for UTD, both static and dynamic
12-island models computed the best solutions. For TMP the best solutions were
delivered by synchronous dynamic 24-island model and for N -Queens the best
results were through an asynchronous dynamic 12-island model. The results were
checked through statistical tests.

The paper is organized as follows: initially, Sec. 2 presents the case-studies,
which can be omitted if the reader is familiarized with them, and the terminology
about the migration parameters in PIMs; Sec. 3 presents the implemented PIMs;
afterwards, Sec. 4 presents experiments, and Section 5 discusses them; finally, after
Sec. 6 on related work, Sec. 7 concludes and proposes future work.

Note to the reviewers The submission includes extended descriptions of the
case-studies (Subsections 2.1 to 2.4), related work (Section 6), and statistical test
(Subsection 5.4) that can be substantially shortened whenever the reviewers find
it convenient. The source code and data used in the experiments are available at
http://genoma.cic.unb.br.

2 Case-Studies and Parallel Island Models (PIMs)

In this section, the four case-studies used for experiments are briefly described:
unsigned reversal and translocation distance, task mapping and scheduling, and
N -Queens.

2.1 Reversal Distance Problem

In bioinformatics, a unichromosomal genome with n genes can be represented as a
permutation π = (π1, π2, ..., πn), where π(i) = πi, 1 ≤ i ≤ n and πi ∈ {1, . . . , n}.
A reversal ρj,k, for 1 ≤ j ≤ k ≤ n is an operation on π that inverts the sub string
between πj and πk transforming π into π′ = (· · · , πj−1, πk, · · · , πj , πk+1, · · · );
for example: for π = (1, 4, 3, 5, 8, 2, 7, 6), ρ5,7(π) gives π′ = (1, 4, 3, 5, 7, 2, 8, 6).
The reversal distance problem consists in to find a shortest sequence of reversals
ρ1, · · · , ρl needed to transform a permutation π into another permutation σ. There
are two different types of permutations: signed and unsigned. In the unsigned case,
genes are abstracted without any orientation, while in the signed one, each πi has
a positive or negative sign reflecting the orientation of the gene within the genome.
A reversal acts over a signed permutation by inverting also the orientation of the
genes in a specific sub string. By simple algebraic properties of permutations, the
reversal distance problem results equivalent to transform an arbitrary permutation
π into the identity permutation ı (that is the permutation sorted in increasing
order and, for the signed case, in which each gene has a positive orientation) by
a minimum number of reversals; such number is called the reversal distance of π
and the so-called sorting by reversals problem consists in determining the reversal
distance of a permutation [4]. The signed version of this problem was proved to be
in P, namely, an O(n2) algorithm was first given by Hanenhalli and Pevzner in [32]
and further, a linear one in [3] was proposed by Bader et al., while the unsigned
one was proved to be NP-hard by Caprara in [10]. The interesting case-study
considered in this work is the Unsigned Reversal Distance (URD) problem, where

http://genoma.cic.unb.br
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permutations have no orientation. The signed case is abbreviated as SRD and
also has been extensively studied in the field of combinatorics and algorithmics of
permutations (e.g., [30], [42]). In evolutionary and genetic approaches, the fitness
function to solve URD is computed applying SRD solution approaches as [3] (that
is the one used in our procedures) as described in [56].

2.2 Translocation Distance Problem

The Translocation Distance problem consists in computing the length of a minimal
sequence of operations called translocations that transform one multi-chromosome
genome into another. As for the reversal distance problem signed and unsigned
genomes are considered. An unsigned genome is composed by a set of chromosomes
{X1, · · · , Xt}, where each Xv, for 1 ≤ v ≤ t, consists of a gene sequence such that
each gene xi is represented by a different natural number appearing only once in the
genome. Consider two chromosomes X = (x1, x2, . . . , xk) and Y = (y1, y2, . . . , ym)
of an unsigned genome. There are two kinds of translocations:

– A prefix-prefix translocation ρpp(X,Y, i, j), 1 < i ≤ k, 1 < j ≤ m that trans-
forms the chromosomes X and Y into two new chromosomes (x1, . . . ,
xi−1, yj , . . . , ym) and (y1, . . . , yj−1, xi, . . . , xk).

– A prefix-suffix translocation ρps(X,Y, i, j), 1 < i ≤ k, 1 < j ≤ m that trans-
forms the chromosomes X and Y into two new chromosomes (x1, . . . ,
xi−1, yj−1, . . . , y1) and (ym, . . . , yj , xi, . . . , xk).

Formally, the Unsigned Translocation Distance (UTD) problem consists in find-
ing the minimum number of translocations for transforming an unsigned genome
A into another genome B, where A and B have the same (number of) genes n,
and number of chromosomes N . Without loss of generality, when the genomes A
and B have the same genes and number of chromosomes, the genes of A and B
can be renamed, so that B can be rewritten as an identity. Thus, for the experi-
ments, it is assumed that genome B is an identity genome, that is a genome with
all its genes sorted in increasing order; for instance, A = {(1, 3, 7)(5, 2, 6, 4)} and
B = {(1, 2, 3, 4)(5, 6, 7)}. The UTD problem is the one addressed in this paper,
and was shown to be NP-hard by Zhu and Wang in [67]. Section 4.3 presents the
experiments with the proposed islands models for this case-study. As for SRD,
the Signed Translocation Distance problem (STD) considers signed genomes. Let
n be the number of genes in the genome; Hannenhalli in [31] provided the first
polynomial-time algorithm with minimum translocation distance in O(n3) and the
best known algorithm, proposed by Bergeron et al. in [6], computes the minimum
translocation distance in O(n). In genetic and evolutionary approaches, the fitness
function to solve UTD problems is given by a STD solution as [6] that is the one
applied in our approach (e.g., [53]).

2.3 Task Mapping and Scheduling

The Task Mapping Problem (TMP), also known as Task Scheduling, consists of
mapping tasks of a Real-Time Application (RTA) onto one of the multiple pro-
cessor cores of a Real-Time System (RTS). The correctness of a RTS depends
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upon the logical soundness of its results and its compliance with time restrictions
(deadlines).

The focus of the case-study is the application of PIMs in TMP for a type
of multiple processor system called Multiprocessor System-on-Chip (MPSoC) as
presented by Wolf et al. in [65]. The MPSoC used in this case-study has a com-
munication architecture that consists of a Network-on-a-Chip, a well-established
intra-chip communication architecture paradigm as presented in [14].

Due to the real-time setting in case-study, the Network-on-a-Chip used fits the
category of a Real-Time Network-on-a-Chip (RTNoC) as defined by Hesham et al.
in [33], with a wormhole packet switching strategy and virtual channels allowing
the preemption of data flows during their transmission by ones with higher priority
level.

In order to perform a static schedulability analysis of possible mapping so-
lutions, this case-study uses a specific model for both the RTNoC-based MP-
SoC platform and the RTA mapped onto it that is similar to the one present
by Indrusiak in [35]. The platform model is a triple Ψ = 〈Π,R,Λ〉, where Π
is a set of homogeneous processing elements connected to its network interface
elements, Π = {π1, ..., πn}; R is a set of routing elements to switch messages
R = {ρ1, ρ2, ..., ρn} that connect elements in Π and themselves using unidirec-
tional links, Λ = {λπ1,ρ1 , λρ1,π1 , λρ1,ρ2 , ..., λρn,ρn−1}, in a regular mesh-grid topol-
ogy. Figure 1, adapted from the work proposed by Indrusiak in [35], illustrates a
NoC-based platform with its components interconnected in a mesh-grid fashion.

Fig. 1: 3× 3 mesh-grid RTNoC platform.
Circles and squares represent, respec-
tively, processor elements and routers.

The application model comprises a
set of tasks Γ , such that τ ∈ Γ
is given as a tuple 〈C, T,D, P, φ〉
formed by the worst-case running
time, inter-arrival period, relative
deadline time, priority-level, and a
transmitted message φ, respectively.
At the end of its execution, the task
τ may transmit a message φ towards
another task. A message φ is repre-
sented as a tuple 〈τd, L, Z〉, where τd
is the destination task, L the basic
latency of message transmission and
Z the message size in bits. The basic
latency Li for a message φi is cal-
culated using Eq. (1) and depends
upon the mapping of the source task
τi that defines the route of links in
which this message will travel across
the platform. This route of links is a
set route(φi). The basic latency cal-
culation also depends on specific parameters such as routers and links maximum
latencies per flit, Lρ and Lλ, respectively.

Li = |route(φi)|·(Lλ + Lρ)− Lρ + ZiLρ (1)

The schedulability analysis considers the utilization factor of processor cores and
links. The utilization factor for a processor core, Uπ, presents the ratio in which the



6 Lucas A. da Silveira et al.

processor is used by the tasks that are mapped onto it and is expressed by Eq. (2)
(according to [44]), where map−1(π) is the set of tasks mapped to processor π.

The same principle is used to evaluate the utilization rate of links in the RT-
NoC to check whether they do not exceed their maximum communication band-
width. The link utilization is represented by Uλ, and is calculated by Eq.(3), where
map−1(λ) is the set of messages that are transmitted over the link λ.

Uπ =
∑

τi∈map−1(π)

Ci
Ti

(2) Uλ =
∑

φi∈map−1(λ)

Li
Ti

(3)

This simple analysis is necessary to avoid non-schedulable solutions that are
those for which the resource demands exceed the available resource capacity, im-
plying that tasks and messages do not comply with the timing restrictions. This
holds for any given processor π if its utilization factor is such that Uπ > 1 and for
any given link λ such that Uλ > 1. However, the utilization analysis is not sufficient
because even in cases where all processors and links are not over-utilized, the task
mapping may not be fully schedulable depending on the task set in the mapped
RTA. Even though these tests are necessary but not sufficient, they are attractive
as methods to quickly identify whether mappings suit the time requirements.

Given a set of tasks Γ and a platform Ψ , a task mapping solution can be en-
coded as an n-dimensional vector of positive integers x, where each jth component,
xj , represents the index of the processor in the platform Ψ responsible for process-
ing the task τj ∈ Γ . The search-based optimization for a task mapping solution
that reduces the number of overused resources is expressed in Eq. (4), where futil
(see Algorithm 1) is a function that calculates the number of processors and links
over burdened in the system given a task placement x using Eqs. (2) and (3). The
optimization goal using futil as a fitness function is to find a task placement x∗

that respects processors and links maximum capacities.

x∗ = argmin
x

futil(x) (4)

The considered TMP case-study is NP-complete similar to the knapsack prob-
lem as given by Garey and Johnson in [26]; thus, a brute force approach is un-
feasible. Indeed, a case where n tasks are being mapped onto a system with m
processors gives a search-space with mn possible task mapping solutions. The
study of TMP in multiple processors RTSs is fundamental to the embedded de-
vices research field since their application is required in critical systems. Another
aspect is that the advance of chip manufacturing allied with the increasing com-
puting requirements of current RTSs makes it natural for embedded devices to
use a large number of processors in the same chip to tackle massively parallel
problems. Section 4.4 presents the experiments, with the proposed islands models
using the TMP problem as a case-study.

2.4 N -Queens

The N-Queens problem [27] is an expansion of the 8-Queens placement problem
that aims to place n queen chess pieces in an n× n chessboard in a configuration
in which no two queens can attack each other; i.e., a configuration where no placed
n points in an n × n grid has the same row, column, or diagonals. The problem
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Algorithm 1 Fitness function futil
INPUT: Tasks Placement (x)
OUTPUT: Number of Over Capacity Elements

1: procedure futil(x)
2: Check Task Mapping x
3: overcap = 0
4: for p = 1 to |Π| do
5: Calculate Uπp . Eq. (2)
6: if Uπp > 1 then
7: overcap = overcap + 1
8: end if
9: end for

10: for l = 1 to |Λ| do
11: Calculate Uλl

. Eq. (3)
12: if Uλl

> 1 then
13: overcap = overcap + 1
14: end if
15: end for
16: return overcap
17: end procedure

is divided into two types: (a) the search of a configuration in which no queen
attack each other (witness problem), and (b) the search for all witness solutions
of a board configuration (counting problem). These problems are related with the
N -Queens completion problem that consists in completing a configuration from a
given partial solution and is known to be both NP-complete and #P-complete
(see [27]). The case-study in this work is the witness problem that is commonly
used as a benchmark in different machine learning-based methods; for example, it
has been used in constructive backtracking algorithms [59] and EA based meta-
heuristics such as GA [40] and PSO [66].

The search for a solution for the N -Queens placement corresponds to a mini-
mization problem according to Eq. 5. Considering the search space is given by n
different positions in an n×n-chessboard it size is given by (n2)!/(n! (n2−n)!) and
the measure of each possible solution is given by the number of attacking move-
ments between queens at these positions. Here, each candidate placement solution
is encoded as an n-dimensional vector x, where the pair (j, xj), for j an index of
x, represent the placement of a queen onto the jth row and xjth column of the
chessboard. Notice that in this form the search space is reduced to a set S of nn

possible placements. The goal is to minimize a function fattack : S→ N that maps
each x ∈ S into the number of queen pieces under attacking movements given by
a placement x. If fattack(x) = 0 then x is a solution that satisfies the N -Queens
placement problem. Figure 2a illustrates the placement of a single queen piece at
(4, 4) position on an 8× 8 board and Figure 2b shows a placement where none of
the 8 queen pieces attack each other.

x∗ = argmin
x

fattack(x) (5)

The function fattack is linearly computed according to Algorithm (pseudo-
code) 2, where given an x placement, it counts the number of queens in each
column, principal and secondary diagonals, and then accumulates the number of
attacks in each column, and principal and secondary diagonals.
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(a) Movement of a queen chess piece. (b) A placement x where fattack(x) = 0

Fig. 2: Illustration of queen chess pieces interaction on an 8× 8 board.

Algorithm 2 N -Queens Attack Counter

INPUT: Placement (x with |x|= n)
OUTPUT: Number of Attacks (attacks)

1: procedure NQueensAttacks(x)
2: queens-col[1..n], queens-dp[1− n..n− 1], quens-ds[2..2n]
3: attacks = 0
4: for j = 1 to n do
5: queens-col[xj ]++
6: queens-dp[xj − j]++
7: queens-ds[xj + j]++
8: end for
9: for j = 1 to n do

10: if queens-col[j] ≥ 2 then
11: attacks+= queens-col[j] (queens-col[j] −1)/2
12: end if
13: end for
14: for j = 2 to 2n do
15: if queens-ds[j] ≥ 2 then
16: attacks+= queens-ds[j] (queens-ds[j] −1)/2
17: end if
18: if queens-dp[j − 1− n] ≥ 2 then
19: attacks+= queens-dp[j − 1− n] (queens-dp[j − 1− n] −1)/2
20: end if
21: end for
22: return attacks
23: end procedure

2.5 Parallel Island Models (PIMs)

In PIMs, each island runs an EA with its population evolving independently and,
periodically individuals are shared between islands by migration. The migration
process can be synchronous occurring when all islands reach the number of gener-
ations controlled by the migration interval, or asynchronous, occurring when each
island controls its migration process through the migration interval independently
of each other.

An organizational architecture known as migration topology is responsible for
establishing a communication model between islands, where at the given migration
interval, individuals are selected in local islands and sent to target islands. For each
island, the population is bi-partitioned ranking individuals from the one with the
best fitness to the one with the worst fitness. This ranking is considered to select
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individuals in the migration process. The migration parameters (for short, MigP )
are abstracted below as argued by Sudholt in [60].

– NumMigIndividuals: number of migration individuals.
– TypeEmIndividual: type of individuals selected for emigration among

1. best, 2. worst, and 3. random.
– EmPolicy: emigration policy to decide whether emigrating individuals in the

local island are 1. cloned or 2. removed to be sent to the target island.
– TypeImIndividual: type of individuals in the target island that are replaced

by immigrants among 1. worst, 2. random, and 3. similar, where by
similar individuals, it is understood replacement of individuals with the same
fitness rank than the immigrants.

– MigrationInterval: percentage of breeding cycles (number of generations) in
which migration occurs.

When these parameters are properly configured, it is expected that accuracy and
speed-up in PIMs be improved.

3 Implemented Parallel Island Models

The PIMs use homogeneously a simple genetic algorithm (GAS), which is respon-
sible for the evolution of the native individuals in each island. The initial pop-
ulation of GAS consists of individuals randomly generated with a breeding cycle
fixed in n generations. The individuals are represented as an array of integers,
and the representation of these individuals varies from problem to problem. Con-
sidering URD and UTD problems, from an unsigned genome given as input a
population of signed genomes is randomly generated. For example, the signed
genomes (+1,−3,+2)(+4,−7,+6,+8) and (+1,−2,−4,−3,+5) could be obtained
from given inputs (1, 3, 2)(4, 7, 6, 8) and (1, 2, 4, 3, 5), respectively. Regarding the
TMP and the N -Queens problems, each individual is respectively a task mapping
solution x or a candidate placement solution x. The representation of individuals
for all these problems is indeed very similar (integer vectors), which simplifies the
adaptation of PIMs to process each different case-study.

The fitness function is linked to the applied case-study: for UTD, the algorithm
to solve STD proposed in [6], which runs in O(n) is used; for URD, the linear
algorithm to solve SRD introduced in [3] is applied; for TMP, an utilization-based
test is applied, as proposed in [35], that has complexity O(n2

λ+n2
π), where n is the

number of tasks in the used RTA model and nλ and nπ are the number of links
and processing cores in the platform, respectively; finally, the algorithm used for
evaluating the fitness function for N -Queens counts the queens in each column,
principal and secondary diagonal and accumulates the number of attacks, which
was implemented with complexity linear.

Algorithm 3 presents the pseudo code for GAS. The breeding cycle works with
three procedures: Crossover, Mutation and Replace and receives the input x ac-
cording to the problem, and genetic breeding cycle parameters for the percent-
age of selection and replacement, and probability of application of mutation and
crossover, which are stored in the BCP structure.

According to the selection parameter, a percentage of the best individuals is
selected from the population PopGA and stored in a vector Mbest. The Crossover
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procedure, given in Algorithm 4, works on Mbest. No all individuals in Mbest

are subjected to crossing since the value of the crossover rate parameter restricts
crossing of parent individuals. For those pairs individuals selected for crossing,
they are fragmented using a single cut-off point, producing four fragments that
later combined produce two offspring stored in the vector Popd. At the end of
Algorithm 4, Popd contains all offspring.

Algorithm 3 Pseudo code for GAS

INPUT: x, according to the problem, maxIteration, and breeding cycle parameters BCP
OUTPUT: Solution to x

1: procedure GA(X, BCP )
2: Generate the initial population PopGA from x
3: Compute fitness of PopGA
4: for i = 1 to maxIteration do
5: Mbest ← Select the BCP .selection ∗|PopGA| best individuals in PopGA
6: Popd ← Crossover(Mbest, PopGA, BCP .crossover)
7: Popd ← Mutation(Popd, BCP .mutation)
8: PopGA ← Replace(PopGA, Popd, BCP .replacement)
9: end for

10: return best solution
11: end procedure

Algorithm 4 Pseudo code for the crossover operator

INPUT: Mbest, PopGA and crossover
OUTPUT: Popd are offspring individuals

1: procedure Crossover( Mbest, PopGA, crossover )
2: i← 1
3: Popd ← [ ] . empty vector
4: while i < |Mbest| do
5: p1 ←Mbest[i]
6: i← i+ 1
7: p2 ←Mbest[i]
8: rand ← Random(1, 100)
9: if rand ≤ crossover * 100 then

10: cut← Random(1, |p1|−1)
11: Ind1 ← Copy(p1, 1, cut− 1) ◦ Copy(p2, cut, |p2|) . Copy(p, i, j) copies p from

position i to j and ◦ concatenates vectors
12: Ind2 ← Copy(p2, 1, cut− 1) ◦ Copy(p1, cut, |p1|)
13: Popd ← Popd ◦ [Ind1, Ind2]
14: end if
15: end while
16: return Popd
17: end procedure

Algorithm 5 tries to apply mutation to each offspring in Popd. The probability
of mutation should be small to avoid compromising the inherited genetic material.
It is important to emphasize that mutating a gene varies from problem to problem.
For UTD and URD, a mutation only inverts the signal of a gene; for N -Queens, it
consists of allocating the queen in a random position on the board; and for TMP, it
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consists of randomly allocating a task in a processor. A mutation of an individual
replaces the original individual only if its fitness is better.

Finally, Algorithm 6 includes descendants in Popd into the current population.
The percentage of individuals to be eventually replaced from the current popula-
tion, PopGA, is given by the replacement parameter. The fitness of each individual
in Popd is compared with the fitness of a randomly selected individual from the
replacement percent of individuals in PopGA, and the individual in PopGA is re-
placed by the descendant only if its fitness is worse; otherwise, the descendant is
discarded.

Algorithm 5 Pseudo code for the mutation operator

INPUT: Popd, mutation
OUTPUT: mutated offspring individuals Popd

1: procedure Mutation( Popd, mutation)
2: i← 1
3: while i ≤ |Popd| do
4: indi ← Popd[i]
5: j ← 1
6: while j ≤ |indi| do
7: rand ← Random(1, 1000)/1000
8: if rand ≤ mutation then
9: indi[j] ← indi[j] ∗ −1 . applies to UTD and URD problems

10: indi[j] ← Random(1, numberQueens) . applies to N -Queens problem
11: indi[j] ← Random(1, numberProcessors) . applies to TMP problem
12: end if
13: j ← j + 1
14: end while
15: if Fitness(indi) < Fitness(Popd[i]) then
16: Popd[i] ← indi
17: end if
18: i← i+ 1
19: end while
20: return Popd
21: end procedure

Algorithm 6 Pseudo code for the replacement operator

INPUT: PopGA, Popd, replacement
OUTPUT: updated PopGA

1: procedure Replace( PopGA, Popd, replacement)
2: i← 1
3: while i ≤ |Popd| do
4: indi ← Popd[i]
5: remainder ← |PopGA| − |PopGA| ∗ replacement
6: j ← Random(1, |PopGA| ∗ replacement) + remainder
7: indj ← PopGA[j]
8: if Fitness(indj) < Fitness(indi) then
9: PopGA[j]← indi

10: end if
11: i← i+ 1
12: end while
13: return PopGA
14: end procedure
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As suggested in [51], to build the initial population in all PIMs, the population
PopGA of GAS was partitioned into populations of equal size and distributed among
the islands as seen in Algorithm 7.

Algorithm 7 Generation of the island populations

INPUT: X, No. of islands NI and population size PS
OUTPUT: Each island with its population

1: procedure InitPopulation(X, NI , PS)
2: Island 1 generates PS individuals
3: for i = 2 to NI do
4: Island 1 sends PS/NI individuals to Island i
5: end for
6: for i = 2 to NI do
7: Island i receives individuals from Island 1
8: end for
9: end procedure

In the following, for short the standard parameters of GAS are denoted as GAP .

3.1 PIMs with Static Topology

The models use bidirectional static communication topologies: torus, binary tree,
complete graph and a unidirectional ring topology (see Figure 3). Torus differs
from the net topology in its neighborhood. All nodes on torus are adjacent to 4
other nodes, while on the net internal and boundary nodes are adjacent to 3 and
4 nodes, respectively. Regarding communication balancing, interactions between
nodes (representing islands) are larger in the torus topology, in which all nodes
communicate with four other nodes, causing greater spread of genes through the
neighborhood when compared with tree, ring and net topologies. In the tree topol-
ogy, internal nodes communicate with at least two and at most three other nodes,
whereas leaf nodes communicate with a single node. In the net all frontier nodes
are connected with three nodes except the internal nodes which are connected
with four nodes. Ring topology provides a smooth scenario for the dissipation of
genetic material, since each island connects with two islands only.

These topologies provide an environment conducive to observe how miscegena-
tion will impact the run-time and accuracy of results. For each static topology,
two PIMs with 12 and 24 island were proposed (according to experimental con-
straints), where subscripts 12 and 24 represent the number of islands and subscript
suffixes S and A differentiate synchronous and asynchronous models, respectively:

– PC12S, PC12A, PC24S and PC24A for the complete graph topology.
– PR12S, PR12A, PR24S and PR24A for the ring topology.
– PTr12S, PTr12A, PTr24S and PTr24A for the tree topology.
– PTo12S, PTo12A, PTo24A and PTo24A for the torus topology.
– PN12S, PN12A with 4×3-net topology and PN24S, PN24A using 6×4-net topology.

Algorithm 8 is executed, after generation of the initial population with Algorithm
7, by each island and calls algorithms 9 and 11 (that calls algorithm 10) for the
proposed static and dynamic topologies, respectively.
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Fig. 3: (a) ring, (b) torus, (c) example of a binary tree with 12 nodes, (d) complete
graph, and (e) x× y-net, where x and y represent rows and columns in the net.

3.2 PIMs with Dynamic Topology

The quality and diversity of populations on each island were measured to apply
dynamism. The islands are qualified as good, bad and medium. The status good,
bad, and medium are related to the diversity in the islands using two metrics: vari-
ance and average. The variance measures the diversity into each island, such that
a high variance is associating little resemblance between native individuals on the
island. The average is associated with the quality of the population on each island.
Since the problems addressed are minimization, islands with low average fitness
have the potential to be considered good islands. Then, for dynamic topologies,
the algorithm adds these metrics for each island and ranks islands in decreasing
order before migration starts.

Algorithm 10 creates communications between islands in each migratory pro-
cess according to the discussion in previous paragraph. The central idea is to
create keys using the average and variance metrics (line 8) from the population
on each island. The Mergesort algorithm is used to sort the IdIsland arrangement
according to the MediaAverage arrangement (line 10). It was adopted that the
first, middle and final third of the sorted islands in IdIsland are qualified as good,
medium and bad, respectively. For the migration process, described in Algorithm
11, the creation of the communication between islands is delegated to island one
(line 2).

The synchronous and asynchronous dynamic 12- and 24-island PIMs are:

– PRd12S, PRd12A, PRd24S and PRd24A: random island communication (Rd).
– P'12S, P'12A,P'24S and P'24A: communication between islands with the same

classification: good with good, medium with medium and bad with bad (').
– Pgbmm12S, Pgbmm12A, Pgbmm24S and Pgbmm24A: communication between good and

bad, and between medium and medium islands (gbmm).

Before each migration, the communication between islands is generated as spec-
ified for each dynamic PIM in Algorithms 10 and 11. In case the communication
is ', pairs of contiguous islands are communicated and, case it is gbmm, pair of
islands, which are selected from the begin and end to the center of the sorted list
of islands, are communicated.
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Algorithm 8 Pseudo code for PIMs

INPUT: X, Number of islands NI , maxIteration and parameters: BCP , MigP
OUTPUT: Solution to X

1: procedure IslandModels(X, NI , PS , BCP , MigP )
2: Compute fitness of PopGA
3: cont ← MigP .MigrationInterval ∗ maxIteration
4: for i = 1 to maxIteration do
5: Mbest ← Select the BCP .selection ∗|PopGA| best individuals in PopGA
6: Popd ← Crossover(Mbest, PopGA, BCP .crossover)
7: Popd ← Mutation(Popd, BCP .mutation)
8: PopGA ← Replace(PopGA, Popd, BCP .replacement)
9: cont ← cont −1

10: if cont == 0 then
11: if static topology is used then StaticMigrationTopology(NI , MigP )
12: end if . Alg. 9
13: if dynamic topology is used then DynamicMigrationTopology(NI , MigP )
14: end if . Alg. 11
15: cont ← MigP .MigrationInterval ∗ maxIteration
16: end if
17: if MigP .Synchronization == true then Sync all islands
18: end if
19: end for
20: return best solution
21: end procedure

Algorithm 9 Migration of individuals with static topologies for each island

INPUT: Number of islands NI , and migration parameters MigP
OUTPUT: Emigrant and immigrant individuals allocated on the target islands

1: procedure StaticMigrationTopology(NI , MigP )
2: Ind←Select MigP .NumMigIndividuals of MigP .TypeEmIndividual
3: if MigP .EmPolicy == Remove then
4: Remove Ind, the selected individuals
5: end if
6: if MigP .Topology == torus then ReceiveIndividuals ← torus(NI , Ind)
7: else if MigP .Topology == tree then ReceiveIndividuals ← tree(NI , Ind)
8: else if MigP .Topology == net then ReceiveIndividuals ← net(NI , Ind)
9: else if MigP .Topology == ring then ReceiveIndividuals ← ring(NI , Ind)

10: else ReceiveIndividuals ← completeGraph(NI , Ind)
11: end if
12: if MigP .TypeImIndividual == best then Replace MigP .NumMigIndividuals best in-

dividuals by the ReceiveIndividuals
13: else if MigP .TypeImIndividual == worst then Replace MigP .NumMigIndividuals

worst individuals by the ReceiveIndividuals
14: else Replace MigP .NumMigIndividuals random individuals by the ReceiveIndividuals
15: end if
16: end procedure

4 Experiments

The PIMs were implemented using the MPI library of the C language in the linux
operating system. The experiments were executed on a computer using two pro-
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Algorithm 10 Building dynamic links between islands - Done by island one

INPUT: Number of islands NI and migration parameters MigP
OUTPUT: Definition of the communication between the islands

1: procedure DynamicTopology(NI , MigP )
2: IdIsland, MediaAverage : array[1..NI ]
3: if MigP .Topology != Random then
4: for i = 1 to NI do
5: Average ← AveragePop(i) . Average of population in island i
6: Variance ← VariancePop(i) . Variance of population in island i
7: IdIsland[i] ← i
8: MediaAverage[i] ← Variance + Average
9: end for

10: MergeSort(IdIsland, MediaAverage) . Indices in IdIsland change according to
merge sort of MediaAverage

11: if MigP .Topology == gbmm then
12: for i = 1 to NI/2 do
13: Communication(IdIsland[i], IdIsland[NI − i+ 1])
14: end for
15: end if
16: if MigP .Topology == ' then
17: for i = 1 to NI/2 do
18: Communication(IdIsland[2i− 1], IdIsland[2i])
19: end for
20: end if
21: else Random communication between islands
22: end if
23: end procedure

Algorithm 11 Migration of individuals with dynamic topology for each island

INPUT: Number of islands NI , and migration parameters, MigP
OUTPUT: Emigrant and Immigrant individuals allocated on the target islands

1: procedure DynamicMigrationTopology(NI , MigP )
2: if Island == 1 then
3: DynamicTopology(NI , MigP ) . Alg. 10
4: end if
5: Ind← Select MigP .NumMigIndividuals of MigP .TypeEmIndividual
6: if MigP .EmPolicy == Remove then
7: Remove Ind, the selected individuals
8: end if
9: if MigP .Topology == ' then

10: ReceiveInd ← '(NI , Ind) . ReceiveIndividuals
11: else if MigP .Topology == gbmm then
12: ReceiveInd ← gbmm(NI , Ind)
13: else ReceiveInd ← Random(NI , Ind)
14: end if
15: if MigP .TypeImIndividual == best then
16: Replace MigP .NumMigIndividuals best individuals by the ReceiveInd
17: else if MigP .TypeImIndividual == worst then
18: Replace MigP .NumMigIndividuals worst individuals by the ReceiveInd
19: else
20: Replace MigP .NumMigIndividuals random individuals by the ReceiveInd
21: end if
22: end procedure
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cessors Xeon E5-2620 with hyper-threading. Each processor has six cores with a
CPU clock rate of 2.4 GHz.

As discussed by Cantú-Paz in [8], Whitley et al. in [64], Duarte et al. in[17]
for a fair comparison, PIMs and sequential EAs must have total populations with
the same size. Thus, the experiments compare run-time and accuracy of PIMs
and their sequential versions over populations that have the same total amount of
individuals. The sequential GAS uses populations of size 24n logn, where n is the
length of the input, while PIMs have two configurations: 1) models with 24 islands,
in which each island has n logn individuals, and 2) models with 12 islands, each
with 2n logn individuals. Thus, all experiments were run with total populations
of the same size.

The number of breeding cycles (generations) in sequential GAS and PIMs is
fixed as the input size. The size for problems URD and UTD is the length of the
genome, the size of the N -Queens problem is the number of queens, and the size
of TMP is the number of tasks to be addressed. The experiments for TMP were
performed for instances using a fixed mesh-grid platform with 6×4 processors (see
Figure 1), however, it is noteworthy that the PIMs work with any other mesh-grid
platform by simply passing the platform as an argument in the models.

In some of the next tables, starting from Table 3, for brevity, the names of the
models introduced in Section 3 are replaced by numbers as given in Table 1.

Table 1: Numbers encoding synchronous and asyncrhonous PIMs.
1=PN12S 3=PTo12S 5=PTr12S 7=PR12S 9= PC12S 11=PRd12S 13=P'12S 15=Pgbmm12S

2=PN24S 4= PTo24A 6= PTr24S 8=PR24S 10=PC24S 12=PRd24S 14=P'24S 16=Pgbmm24S

17=PN12A 19=PTo12A 21=PTr12A 23=PR12A 25= PC12A 27=PRd12A 29=P'12A 31=Pgbmm12A

18=PN24A 20= PTo24A 22= PTr24A 24=PR24A 26=PC24A 28=PRd24A 30=P'24A 32=Pgbmm24A

The speed-up of each PIM is computed as the ratio of the running time required
by the algorithm GAS by the one of the PIM. Each execution is measured using
the Linux command time. The ratio is computed as the average of ten runs for
each different input considering for each problem a number of inputs of significant
size as specified in Sections 4.2, 4.3, 4.4 and 4.5.

4.1 Parameter Setup

EA and GA performance are highly dependent on the values of their parameters.
Carefully choosing the values of the parameters is essential to guarantee a suitable
parameter tunning. Here we will be using parameter tuning. By parameter tuning,
we mean that the commonly practised approach is to find good parameter values
before running the GA and after that, executing the GA using these values that
will remain fixed during the breeding cycle. We adopt the so-called “taxonomy
T1” discussed in [21]. In essence, the tuning algorithm works by the “generate and
test principle”, that is, through the generation of parameter vectors and testing
them to establish their usefulness. Here, we use the tuner known in the literature
as “iterative tuner” that starts with a small number of parameter vectors and
creates new vectors iteratively during execution. In the tuner algorithm described
in the sequence, we are starting with just a randomly generated parameter vector.
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Table 2: Estimated Values for the Parameters

Parameter Estimated values

Breeding Cycle - BCP

crossover 0.02, 0.04, · · · , 0.98, 1.0
mutation 0.01, 0.011, · · · , 0.019, 0.02
selection 2%, 4%, · · · , 98%, 100%

replacement 2%, 4%, · · · , 98%, 100%

Migration - MigP

NumMigIndividuals 1,2,3,4,5,6,7,8,9,10,11,12,13
TypeEmIndividual 1=Best, 2=Worst, 3=Random

EmPolicy 1=Clone, 2=Remove
TypeImIndividual 1=Worst, 2=Random, 3=Similar
MigrationInterval 2%, 4%, · · · , 98%, 100%

So, to improve accuracy, the GAS and PIMs were submitted to a parameter
tuning taking into account each case-study. Table 2 presents the ranges of possible
parameter values. For the parameters involving percentage, the tested values range
between 2% and 100% checking in this manner a great variety of possibilities. The
crossover rate was set from 0.02 to 1.0, while the mutation probability ranges be-
tween 0.01 and 0.02 since in evolutionary processes it is expected mutation appears
rarely. For migration parameters TypeEmIndividual, EmPolicy, TypeImIndividual
we just label the individuals as explained in Section 2.5. Regarding NumMigIn-
dividuals, the tested values are naturals from 1 to 13 due to experience collected
from other works, where the number of individuals was never greater than 13, as
seen in [50,51,13,53].

Algorithm 12 presents a method used to calibrate the breeding cycle parame-
ters, whereas the migration parameters are calibrated as shown in Algorithm 13.
Initially, the breeding and migration parameters are initialized with random val-
ues taken from Table 2. Then, each parameter belonging to the breeding cycle
is adjusted. For each vi value of a Pk parameter belonging to the breeding cycle
shown in Table 2, the PIM to be adjusted is executed 10 times for each instance
of each case-study. The vi value that provides the best accuracy is fixed to evalu-
ate the next parameter, Pk+1, later. Subsequently, the migration parameters are
calibrated as shown in Algorithm 13. The calibration method is similar to that
used for breeding cycle parameters, with the difference that the breeding cycle
parameters fixed in Algorithm 12 are used to calibrate the migration parameters.
Thus it is only necessary to start the migration parameters at the beginning of
the calibration.

The size of inputs used in the experiments setup for each case-study are de-
scribed below.

– URD: 100 randomly generated permutations with 150 genes.
– UTD: 100 randomly generated genomes with 150 genes and five chromosomes.
– TMP: 10 task mapping problems with 50 task sets, as defined in Section 2.3,

and using a platform 6 × 4 processors. The task sets were generated using
uniform distributions to create the τi tuple’ elements including messages and
their destination tasks.

– N -Queens: six randomly generated inputs, each of n queens for n ∈ {100, 110,
. . . , 150}.

Tables 3, 5, 7 and 9 provide the best values obtained for each parameter in
synchronous PIMs and Tables 4, 6, 8 and 10, for asynchronous PIMs. Algorithm
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12 calibrates the parameters of the GAS ignoring the migration parameters. The
breeding cycle parameters calibrated for each case-study can be found in Table 11.

Algorithm 12 Calibration of the breeding cycle parameters

INPUT: problem instance X, PIM, GAS and parameters: BCP , Migp
OUTPUT: BCP calibrated

1: procedure CalibrationBCP(PIM, BCP , MigP , X)
2: P1 ←(2%, 4%, · · · , 98%, 100%), P2 ←(1%, 1.1%, · · · , 1.9%, 2%)
3: out1 : array[1..|P1|], out2 : array[1..|P2|]
4: Initialize BCP with random values
5: Initialize MIGP with random values
6: for i = 1 to 4 do
7: if i ≤ 3 then
8: for j = 1 to |P1| do
9: Run PIM with parameter P1[j] 10 times to solve the instances of problem

X and store the average of the 10 executions in out1[j]
10: end for
11: indexbest ← receives the index of the lowest value in out1
12: if i == 1 then
13: BCP .crossover← P1[indexbest]
14: else if i == 2 then
15: BCP .selection← P1[indexbest]
16: else
17: BCP .replacement← P1[indexbest]
18: end if
19: else
20: for j = 1 to |P2| do
21: Run PIM with parameter P2[j] 10 times to solve the instances of problem

X and store the average of the 10 executions in out2[j]
22: end for
23: indexbest ← receives the index of the lowest value in out2
24: BCP .mutation← P2[indexbest]
25: end if
26: end for
27: end procedure

Table 3: Parameter setup in synchronous PIMs to solve URD.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Parameter Static PIMs Dynamic PIMs
crossover .92 .92 .90 .88 .96 .94 .96 .72 .90 .90 .98 .96 .96 .92 .98 .96
mutation .014 .01 .01 .01 .01 .01 .01 .012 .01 .013 .01 .01 .01 .01 .01 .01
selection 80% 92% 92% 96% 98% 94% 90% 86% 90% 86% 96% 94% 84% 86% 78% 94%

replacement 60% 38% 38% 38% 50% 50% 60% 46% 50% 60% 38% 50% 40% 40% 50% 46%
NumMigIndividuals 2 1 3 1 3 2 3 5 1 4 6 4 7 10 2 5
TypeEmIndividual 1 2 2 2 1 3 2 2 3 3 1 3 2 3 3 3

EmPolicy 2 1 2 2 2 1 1 2 1 1 2 2 1 1 1 2
TypeImIndividual 1 1 2 1 2 2 1 1 2 1 1 1 2 1 2 3
MigrationInterval 10% 20% 94% 64% 56% 10% 50% 32% 10% 30% 88% 84% 20% 60% 30% 68%
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Algorithm 13 Calibration of the migration parameters

INPUT: problem instance X, PIM and migration parameters MigP
OUTPUT: MigP calibrated

1: procedure CalibrationMP(PIM, MigP , X)
2: P1 ←(1, 2), P2 ←(1, 2, 3), P3 ←(1, 2, · · · , 12, 13)
3: P4 ←(2%, 4%, · · · , 98%, 100%)
4: out1 : array[1..|P1|], out2 : array[1..|P2|], out3 : array[1..|P3|], out4 : array[1..|P4|]
5: Initialize MIGP with random values
6: for i = 1 to 5 do
7: if i == 1 then
8: for j = 1 to |P1| do
9: Run PIM with parameter P1[j] 10 times to solve the instances of problem

X and store the average of the 10 executions in out1[j]
10: end for
11: indexbest ← receives the index of the lowest value in out1
12: BCP .EmPolicy← P1[indexbest]
13: else if i == 2 or i == 4 then
14: for j = 1 to |P2| do
15: Run PIM with parameter P2[j] 10 times to solve the instances of problem

X and store the average of the 10 executions in out2[j]
16: end for
17: indexbest ← receives the index of the lowest value in out2
18: if i == 2 then
19: BCP .TypeEmIndividuals← P2[indexbest]
20: else
21: BCP .TypeImIndividual← P2[indexbest]
22: end if
23: else if i == 3 then
24: for j = 1 to |P3| do
25: Run PIM with parameter P3[j] 10 times to solve the instances of problem

X and store the average of the 10 executions in out3[j]
26: end for
27: indexbest ← receives the index of the lowest value in out3
28: BCP .NumMigIndividuals← P3[indexbest]
29: else
30: for j = 1 to |P4| do
31: Run PIM with parameter P4[j] 10 times to solve the instances of problem

X and store the average of the 10 executions in out4[j]
32: end for
33: indexbest ← receives the index of the lowest value in out4
34: BCP .MigrationInterval← P4[indexbest]
35: end if
36: end for
37: end procedure

4.2 Experiments for URD

Packages of one hundred unsigned permutations were randomly generated con-
taining n genes of lengths n ∈ {100, 110, . . . , 150}. Parameters were taken from
Table 3. For each permutation, the PIMs and the sequential GAS were executed ten
times starting from the same population for all permutations of the same length.
Subsequently, the averages of the ten results for each permutation and algorithm
were calculated. These averages represent the number of reversals for each un-
signed permutation. The average (A) results and standard deviation (SD) for each
package of permutations of each length (L) are shown in Tables 12 and 13 for
synchronous PIMs and in Tables 14 and 15 for asynchronous PIMs. Considering
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Table 4: Parameter setup in asynchronous PIMs to solve URD.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Parameter Static PIMs Dynamic PIMs
crossover .98 .82 .94 .94 .98 .94 .98 .98 .86 .92 .94 .94 .94 .94 .96 .94
mutation .01 .012 .011 .011 .015 .013 .012 .01 .017 .016 .02 .017 .013 .015 .011 .016
selection 80% 84% 86% 86% 92% 86% 94% 82% 84% 80% 88% 86% 98% 86% 94% 86%

replacement 28% 70% 70% 60% 70% 70% 70% 50% 30% 70% 36% 30% 38% 70% 70% 70%
NumMigIndividuals 5 5 5 7 9 5 1 10 8 5 5 5 5 5 5 9
TypeEmIndividual 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EmPolicy 2 2 2 2 2 2 2 2 1 1 2 2 1 2 2 1
TypeImIndividual 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MigrationInterval 30% 30% 30% 30% 30% 30% 30% 10% 30% 30% 30% 30% 30% 30% 30% 30%

Table 5: Parameter setup in synchronous PIMs to solve UTD.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Parameter Static PIMs Dynamic PIMs
crossover .88 .98 .96 .84 .92 .84 .96 .98 .94 .96 .94 .96 .94 .98 .96 .96
mutation .014 .01 .01 .014 .01 .01 .01 .01 .01 .01 .012 .011 .01 .01 .01 .014
selection 96% 68% 82% 96% 80% 96% 94% 94% 96% 94% 40% 54% 98% 96% 48% 94%

replacement 60% 70% 68% 30% 44% 30% 60% 80% 30% 60% 70% 44% 70% 28% 66% 50%
NumMigIndividuals 3 5 8 7 8 6 9 2 5 4 3 5 9 7 6 5
TypeEmIndividual 1 1 1 1 1 1 3 2 1 1 1 1 3 1 3 1

EmPolicy 2 1 2 1 2 1 1 2 2 1 2 2 2 1 1 1
TypeImIndividual 2 1 1 2 1 2 1 2 1 2 1 1 3 3 2 3
MigrationInterval 32% 30% 42% 56% 90% 56% 10% 60% 30% 10% 10% 10% 10% 40% 40% 10%

Table 6: Parameter setup in asynchronous PIMs to solve UTD.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Parameter Static PIMs Dynamic PIMs
crossover .64 .62 .92 .62 .66 .82 .68 .84 .86 .72 .72 .72 .74 .72 .72 .78
mutation .01 .017 .013 .011 .011 .015 .016 .012 .01 .012 .011 .013 .016 .018 .011 .016
selection 50% 40% 40% 40% 66% 40% 64% 40% 70% 50% 72% 40% 64% 40% 68% 40%

replacement 70% 60% 70% 90% 70% 70% 70% 70% 64% 80% 90% 70% 70% 70% 28% 70%
NumMigIndividuals 5 1 5 1 5 4 1 4 5 1 1 2 5 13 5 1
TypeEmIndividual 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EmPolicy 2 2 2 2 2 2 1 2 1 1 2 1 1 2 2 1
TypeImIndividual 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MigrationInterval 30% 30% 30% 30% 30% 30% 30% 10% 10% 30% 30% 30% 30% 20% 30% 30%

Table 7: Parameter setup in synchronous PIMs to solve TMP

.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Parameter Static PIMs Dynamic PIMs
crossover .80 .94 .98 .92 .96 .86 .88 .96 .82 0.90 .98 .78 .80 .94 .80 .98
mutation .014 .01 .011 .012 .012 .01 .01 .01 .01 .013 .011 .01 .01 .01 .01 .01
selection 40% 30% 90% 30% 76% 40% 78% 20% 40% 40% 62% 30% 40% 30% 40% 68%

replacement 70% 70% 36% 70% 70% 90% 70% 80% 16% 70% 78% 18% 66% 70% 68% 72%
NumMigIndividuals 5 5 5 6 2 5 1 2 5 1 5 5 5 5 5 5
TypeEmIndividual 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 3

EmPolicy 2 2 2 2 2 2 2 2 1 1 2 1 2 2 1 2
TypeImIndividual 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
MigrationInterval 30% 30% 74% 30% 66% 30% 26% 60% 32% 10% 28% 34% 30% 30% 28% 12%

the accuracy of the results, the best synchronous PIMs with static and dynamic
topologies are respectively PTr12S and Pgbmm12S. Looking at asynchronous PIMs,
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Table 8: Parameter setup in asynchronous PIMs to solve TMP.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Parameter Static PIMs Dynamic PIMs
crossover .80 .84 .92 .94 .96 .92 .92 .98 90% .92 .92 .86 .80 .88 .80 .84
mutation .011 .013 .012 .01 .014 .014 .017 .01 .018 .02 .02 .012 .014 .019 .011 .013
selection 66% 62% 64% 68% 42% 72% 86% 66% 40% 80% 64% 70% 42% 54% 40% 52%

replacement 38% 70% 36% 42% 36% 40% 70% 40% 38% 28% 70% 70% 70% 60% 70% 68%
NumMigIndividuals 5 5 5 5 7 5 3 4 4 5 1 5 5 3 5 4
TypeEmIndividual 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

EmPolicy 2 2 1 1 1 1 2 1 1 1 2 2 2 1 1 1
TypeImIndividual 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MigrationInterval 32% 30% 34% 28% 32% 30% 34% 26% 10% 10% 74% 28% 30% 10% 26% 12%

Table 9: Parameter setup in synchronous PIMs to solve N -Queens.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Parameter Static PIMs Dynamic PIMs
crossover .98 .98 .98 .98 .98 .98 .92 .96 .98 .98 .98 .98 .98 .98 .98 .98
mutation .014 .01 .011 .012 .012 .01 .01 .01 .01 .013 .011 .01 .01 .01 .01 .01
selection 50% 54% 66% 74% 94% 60% 62% 80% 54% 70% 56% 40% 56% 54% 54% 54%

replacement 28% 50% 46% 60% 54% 54% 22% 74% 50% 70% 36% 26% 56% 44% 54% 56%
NumMigIndividuals 2 11 6 5 13 7 2 13 12 4 1 4 3 7 13 4
TypeEmIndividual 3 3 3 1 2 1 1 1 1 1 1 3 2 1 1 1

EmPolicy 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
TypeImIndividual 1 3 2 1 3 2 1 1 1 1 2 1 2 2 3 1
MigrationInterval 76% 12% 50% 50% 50% 10% 26% 46% 30% 10% 34% 54% 40% 46% 50% 20%

Table 10: Parameter setup in asynchronous PIMs to solve N -Queens.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Parameter Static PIMs Dynamic PIMs
crossover .98 .98 .98 .96 .98 .98 .96 .96 .98 .98 .98 .98 .98 .98 .98 .98
mutation .01 .011 .015 .013 .014 .011 .013 .012 .016 .02 .01 .016 .017 .019 .014 .013
selection 68% 66% 54% 74% 94% 60% 68% 54% 78% 56% 52% 60% 54% 74% 54% 78%

replacement 54% 50% 46% 60% 70% 54% 60% 54% 70% 68% 36% 70% 70% 64% 54% 34%
NumMigIndividuals 2 11 4 12 9 7 2 13 12 4 1 4 4 5 13 1
TypeEmIndividual 3 3 3 1 1 1 1 1 1 1 3 3 3 1 1 2

EmPolicy 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
TypeImIndividual 1 3 2 1 3 2 1 1 1 1 2 1 2 2 3 1
MigrationInterval 54% 50% 50% 50% 20% 54% 26% 10% 32% 10% 10% 54% 56% 44% 60% 30%

Table 11: Parameter setup for the sequential GAs.

Parameter URD UTD TMP N-Queens
crossover .90 .90 .90 .88
mutation .02 .02 .016 .012
selection 60% 80% 92% 96%

replacement 60% 70% 38% 38%

we have PR24A as the best static and Pgbmm12A the best dynamic. The best absolute
results are highlighted in blue and are given by the synchronous models.

Table 16 presents the speed-ups for all PIMs highlighting the best in bold. The
speed-up is computed as the ratio average of the set of the one hundred inputs of
length 150 used in the experiments, being each input executed ten times.
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Table 12: Results for URD with synchronous static PIMs: net, torus, tree, ring
and complete graph.

GAS PN12S PN24S PTo12S PTo24A PTr12S PTr24S

L A SD A SD A SD A SD A SD A SD A SD

100 79.05 2.39 77.57 1.82 77.68 1.72 77.58 1.78 77.71 1.75 77.5 1.74 77.64 1.72
110 88.1 2.33 86.13 1.74 86.31 1.69 86.18 1.73 86.38 1.67 86.13 1.64 86.27 1.66
120 97.3 2.4 94.7 1.7 94.88 1.67 94.79 1.69 94.91 1.68 94.67 1.75 94.88 1.7
130 106.67 2.44 103.44 1.9 103.6 1.79 103.48 1.87 103.71 1.85 103.31 1.83 103.64 1.8
140 115.75 2.28 111.89 2.24 112.16 2.21 111.94 2.21 112.23 2.17 111.88 2.19 112.1 2.2
150 125.35 2.25 120.8 1.67 120.96 1.61 120.81 1.58 121.01 1.57 120.64 1.57 120.93 1.52

PR12S PR24S PC12S PC24S

L A SD A SD A SD A SD

100 77.47 1.79 77.99 1.78 77.56 1.82 77.7 1.75
110 86.15 1.7 86.65 1.64 86.21 1.76 86.34 1.68
120 94.66 1.67 95.36 1.72 94.84 1.73 94.94 1.65
130 103.41 1.8 104.16 1.84 103.51 1.9 103.7 1.83
140 111.89 2.23 112.72 2.27 112.07 2.23 112.31 2.18
150 120.65 1.61 121.58 1.55 120.87 1.68 121.04 1.55

Table 13: Results for URD with synchronous dynamic PIMs.

GAS PRd12S PRd24S P'12S P'24S Pgbmm12S Pgbmm24S

L A SD A SD A SD A SD A SD A SD A SD

100 79.05 2.39 77.9 1.78 77.7 1.78 77.95 1.75 77.71 1.75 77.53 1.75 77.64 1.77
110 88.1 2.33 86.57 1.69 86.36 1.65 86.67 1.7 86.32 1.67 86.12 1.69 86.27 1.69
120 97.3 2.4 95.18 1.71 94.98 1.7 95.32 1.68 94.93 1.67 94.76 1.69 94.84 1.64
130 106.67 2.44 103.97 1.88 103.69 1.83 104.02 1.83 103.7 1.81 103.42 1.8 103.63 1.79
140 115.75 2.41 112.49 2.15 112.25 2.1 112.52 2.15 112.22 2.12 111.87 2.18 112.11 2.18
150 125.35 2.25 121.31 1.59 121.06 1.5 121.43 1.56 121.02 1.61 120.72 1.64 120.92 1.6

Table 14: Results for URD with asynchronous static PIMs: net, torus, tree, ring
and complete graph.

GAS PN12A PN24A PTo12A PTo24A PTr12A PTr24A

L A SD A SD A SD A SD A SD A SD A SD

100 79.05 2.39 77.59 1.8 77.81 1.82 77.53 1.82 77.63 1.79 77.47 1.81 77.68 1.79
110 88.1 2.33 86.18 1.72 86.5 1.67 86.16 1.74 86.27 1.72 86.16 1.75 86.28 1.71
120 97.3 2.4 94.81 1.66 95.1 1.73 94.74 1.73 94.83 1.66 94.7 1.7 94.88 1.66
130 106.67 2.44 103.46 1.86 103.88 1.79 103.45 1.77 103.57 1.84 103.39 1.92 103.62 1.78
140 115.75 2.28 112.0 2.24 112.42 2.18 111.94 2.23 112.1 2.15 111.91 1.8 112.18 2.19
150 125.35 2.25 120.83 1.61 121.24 1.66 120.69 1.67 120.89 1.58 120.68 1.64 120.99 1.57

PR12A PR24A PC12A PC24A

L A SD A SD A SD A SD

100 77.5 1.82 77.55 1.79 77.73 1.84 77.7 1.76
110 86.15 1.7 86.17 1.65 86.34 1.72 86.41 1.73
120 95.26 1.68 94.76 1.67 95.45 1.71 95.05 1.61
130 103.38 1.89 103.45 1.76 103.63 1.79 103.71 1.75
140 111.93 2.2 112.04 2.19 112.18 2.28 112.31 2.19
150 120.69 1.63 120.82 1.6 120.94 1.62 121.08 1.57

4.3 Experiments for UTD

Experiments were performed with the selected parameters in Table 5 for calculat-
ing translocation distances for all PIMs and the sequential GAS. For this purpose,
synthetic genomes were taken from [50] with n genes, for n ∈ {100, 110, . . . , 150},
and with N chromosomes, for N ∈ {3, 4, 5}. Then, for all these lengths and number



On the Behavior of Parallel Island Model Genetic Algorithms 23

Table 15: Results for URD with asynchronous dynamic PIMs.

GAS PRd12A PRd24A P'12A P'24A Pgbmm12A Pgbmm24A

L A SD A SD A SD A SD A SD A SD A SD

100 79.05 2.39 77.56 1.81 77.71 1.79 77.5 1.8 77.63 1.78 77.54 1.76 77.67 1.75
110 88.1 2.33 86.17 1.71 86.37 1.66 86.14 1.73 86.28 1.74 86.13 1.65 86.26 1.67
120 97.3 2.4 94.72 1.66 94.96 1.71 94.67 1.71 94.94 1.66 94.66 1.65 94.93 1.67
130 106.67 2.44 103.47 1.9 103.68 1.86 103.42 1.86 103.69 1.81 103.36 1.76 103.66 1.84
140 115.75 2.41 111.97 2.18 112.23 2.1 111.89 2.16 112.19 2.17 111.91 2.2 112.19 2.18
150 125.35 2.25 120.8 1.63 121.06 1.49 120.67 1.66 121.03 1.56 120.66 1.6 121.02 1.58

Table 16: Speed-up considering URD problem for all PIMs (See Tab. 1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.79 5.86 5.41 5.92 4.86 5.73 5.35 7.17 5.54 6.28 4.91 5.8 5.67 6.3 5.63 5.47

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
5.68 7.07 5.73 6.45 5.36 6.41 5.07 6.45 6.44 6.85 5.37 6.44 5.33 6.37 5.4 6.14

of chromosomes (n,N), packages of hundred genomes were processed, and the av-
erage of the results for each algorithm was calculated. Each algorithm was executed
ten times for each genome provided as input, and the average of the ten results
was given as output. Tables 17 and 18 present the average translocation distance
and the standard deviation for the synchronous and asynchronous PIMs. The best
results are highlighted for synchronous and asynchronous PIMs, colouring in blue
the best absolute results. In general, the best results using synchronous PIMs pro-
cessing inputs with 3 and 4 chromosomes were obtained by static models PN12S and
PR12S, while in the experiments with 5 chromosomes, the dynamic model P'12S

presented, on average, the best results. In experiments involving asynchronous
PIMs, the PC12A static model was the best representative.

The speed-ups of the PIMs regarding the sequential GAS, were measured as
the ratio average of the one hundred genomes with 150 genes and 5 chromosomes.
Then, each model was executed ten times for each genome, and the average running
time was considered. The computed speed-ups are available in Table 19 with best
speed-up highlighted in bold.

4.4 Experiments for TMP

For this experiment, 60 entries were processed varying the used synthetic gen-
erated RTA number of tasks and flows. The sixty entries are divided into tens
containing 30, 40, 50, 60, 70 and 80 tasks. The parameters used are those given
in Tables 7 and 8. For each PIM and GAS using input Inl belonging to the set of
ten inputs of length n ∈ {30, 40, 50, 60, 70, 80}, the following method was applied:
each algorithm executed input Inl ten times; the average result of the ten runs
was taken as result for the algorithm.

Accuracy of results for synchronous static PIMs are shown in Tables 20 and
21. The best results for static and dynamic topologies are provided by PN24S and
Pgbmm24S. According to Tables 22 and 23, PTo24A was the best asynchronous static
PIM and PRd24A the best dynamic PIM. The best absolute results, highlighted
in blue, were with two exceptions provided by the synchronous dynamic model
Pgbmm24S.
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Table 17: Results for experiments in UTD problem considering genomes with 3, 4
and 5 chromosomes obtained from synchronous PIMs.

3 chromosomes
GAS PN12S PN24S PTo12S PTo24S PTr12S PTr24S PR12S PR24S

L A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 65.44 2.33 63.24 3.08 63.32 2.63 63.26 2.17 63.31 2.13 63.3 2.56 63.31 2.74 63.22 2.67 63.27 2.81
110 72.94 2.21 70.7 2.92 70.84 2.56 70.75 2.88 70.83 2.85 70.76 2.91 70.85 2.97 70.73 2.92 70.82 2.95
120 80.06 2.67 77.82 2.61 77.97 2.61 77.83 2.66 77.94 2.62 77.89 2.64 77.95 2.62 77.81 2.59 77.88 2.6
130 86.83 2.78 85.55 2.77 85.71 2.74 85.55 2.69 85.71 2.77 85.62 2.68 85.72 2.76 85.52 2.67 85.66 2.72
140 94.59 2.88 92.75 2.7 92.95 2.67 92.75 2.68 92.91 2.69 92.77 2.64 92.91 2.68 92.66 2.66 92.87 2.68
150 102.10 2.75 100.29 2.57 100.55 2.63 100.28 2.59 100.53 2.61 100.34 2.56 100.52 2.59 100.27 2.58 100.46 2.69

PC12S PC24S PRd12S PRd24S P'12S P'24S Pgbmm12S Pgbmm24S

A SD A SD A SD A SD A SD A SD A SD A SD

63.26 2.77 63.28 2.73 63.36 2.84 63.41 2.86 63.24 2.62 63.28 2.69 63.38 2.56 63.26 2.51
70.78 2.91 70.8 2.92 70.91 2.77 71.0 2.72 70.8 2.92 70.81 2.76 70.87 2.98 70.76 2.93
77.83 2.57 77.91 2.64 78.02 2.62 78.13 2.66 77.8 2.6 77.92 2.71 77.97 2.64 77.84 2.59
85.55 2.67 85.66 2.73 85.78 2.8 85.91 2.79 85.59 2.73 85.63 2.53 85.78 2.77 85.57 2.7
92.76 2.67 92.85 2.64 93.02 2.71 93.2 2.75 92.72 2.65 92.91 2.66 92.99 2.68 92.8 2.67
100.35 2.64 100.48 2.61 100.63 2.63 100.85 2.68 100.34 2.59 100.52 2.97 100.57 2.62 100.4 2.6

4 chromosomes
GAS PN12S PN24S PTo12S PTo24S PTr12S PTr24S PR12S PR24S

L A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 61.53 2.46 61.07 2.76 61.1 2.73 61.07 2.86 61.1 2.84 61.09 2.66 61.1 2.75 61.09 2.65 61.09 2.64
110 68.68 2.73 67.58 2.76 67.65 2.74 67.54 2.88 67.61 2.93 67.6 2.57 67.63 2.76 67.53 2.76 67.59 2.83
120 75.46 2.81 74.68 2.78 74.82 2.85 74.72 2.86 74.75 2.92 74.71 2.77 74.74 2.82 74.7 2.66 74.76 2.82
130 82.45 2.89 80.93 2.81 81.05 2.83 80.93 2.81 81.02 2.83 80.99 2.81 81.03 2.85 80.97 2.74 81.02 2.83
140 89.94 2.82 87.79 2.91 88.13 2.89 88.0 2.89 88.11 2.91 88.02 2.67 88.1 2.98 87.96 2.97 88.08 2.99
150 97.68 2.91 94.87 2.79 95.07 2.83 94.87 2.83 95.07 2.82 94.95 2.83 95.05 2.82 94.9 2.79 95.03 2.81

PC12S PC24S PRd12S PRd24S P'12S P'24S Pgbmm12S Pgbmm24S

A SD A SD A SD A SD A SD A SD A SD A SD

61.11 2.35 61.1 2.34 61.13 2.38 61.16 2.35 61.07 2.75 61.09 2.77 61.13 2.65 61.07 2.74
67.58 2.57 67.62 2.52 67.69 2.76 67.74 2.78 67.56 2.79 67.59 2.83 67.67 2.52 67.58 2.51
74.73 2.86 74.71 2.81 74.85 2.82 74.94 2.83 74.73 2.78 74.77 2.89 74.89 2.26 74.71 2.21
80.96 2.85 81.0 2.81 81.12 2.8 81.2 2.87 80.94 2.71 80.99 2.88 81.11 2.86 80.95 2.81
88.01 2.81 88.06 2.85 88.22 2.84 88.36 2.88 87.96 2.79 88.09 2.87 88.17 2.89 88.01 2.91
94.95 2.9 95.01 2.93 95.15 2.9 95.28 2.93 94.93 2.84 95.06 2.83 95.12 2.97 94.97 2.93

5 chromosomes
GAS PN12S PN24S PTo12S PTo24S PTr12S PTr24S PR12S PR24S

L A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 58.81 2.76 57.63 2.89 57.65 2.86 57.63 2.88 57.63 2.94 57.63 2.67 57.63 2.64 57.62 2.74 57.63 2.75
110 65.02 2.83 64.58 2.9 64.61 2.94 64.55 2.91 64.61 2.87 64.58 2.89 64.61 2.84 64.59 2.89 64.56 2.84
120 72.02 2.27 71.77 2.89 71.83 2.88 71.78 2.91 71.8 2.87 71.77 2.91 71.8 2.96 71.77 2.88 71.78 2.85
130 78.79 2.69 77.79 2.94 77.91 2.93 77.78 2.91 77.85 2.9 77.81 2.97 77.85 2.89 77.79 2.91 77.83 2.9
140 86.13 2.39 84.62 2.76 84.7 2.69 84.65 2.74 84.69 4.23 84.66 2.93 84.69 2.72 84.63 2.82 84.67 2.72
150 92.5 2.83 90.74 2.89 90.88 2.81 90.78 2.85 90.88 2.78 90.83 2.87 90.9 2.78 90.74 2.82 90.85 2.79

PC12S PC24S PRd12S PRd24S P'12S P'24S Pgbmm12S Pgbmm24S

A SD A SD A SD A SD A SD A SD A SD A SD

57.63 2.85 57.64 2.83 57.67 2.69 57.66 2.74 57.62 2.86 57.62 2.82 57.66 2.87 57.62 2.84
64.57 2.89 64.59 2.85 64.65 2.94 64.71 2.9 64.56 2.92 64.6 2.64 64.62 2.89 64.57 2.84
71.78 2.78 71.8 2.77 71.86 2.87 71.88 2.78 71.74 2.91 71.82 2.87 71.83 2.77 71.75 2.86
77.84 2.96 77.86 2.93 77.89 2.99 77.95 2.94 77.79 2.94 77.84 2.77 77.91 2.91 77.81 2.88
84.65 2.88 84.68 2.82 84.77 2.93 84.83 2.86 84.61 2.95 84.68 2.84 84.72 2.82 84.61 2.79
90.78 2.84 90.84 2.82 90.96 2.87 91.1 2.88 90.71 2.81 90.82 2.75 90.92 2.85 90.8 2.87

The speed-up was computed using ten inputs with eighty tasks each. Each
PIM and the sequential GAS perform each input ten times and the speed-up was
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Table 18: Results for experiments in UTD problem considering genomes with 3, 4
and 5 chromosomes obtained from asynchronous PIMs.

3 chromosomes
GAS PN12A PN24A PTo12A PTo24A PTr12A PTr24A PR12A PR24A

L A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 65.44 2.33 63.48 2.23 63.6 2.27 63.35 2.22 63.6 2.27 63.38 2.24 63.47 2.2 63.4 2.24 63.41 2.16
110 72.94 2.21 71.02 2.11 71.23 2.08 70.82 2.09 71.23 2.07 70.92 2.08 71.03 2.02 70.93 2.01 71.01 2.04
120 80.06 2.67 78.17 2.82 78.47 2.78 78.06 2.78 78.47 2.78 78.07 2.79 78.21 2.7 78.05 2.75 78.12 2.66
130 86.83 2.78 85.96 2.87 86.28 2.88 85.77 2.9 86.28 2.88 85.86 2.89 85.97 2.79 85.84 2.83 85.93 2.75
140 94.59 2.88 93.26 2.84 93.63 2.77 93.1 2.75 93.63 2.77 93.09 2.79 93.36 2.75 93.09 2.82 93.22 2.75
150 102.10 2.75 100.87 2.85 101.36 2.76 100.6 2.69 101.36 2.76 100.75 2.76 100.99 2.74 100.71 2.78 100.82 2.66

PC12A PC24A PRd12A PRd24A P'12A P'24A Pgbmm12A Pgbmm24A

A SD A SD A SD A SD A SD A SD A SD A SD

63.31 2.22 63.47 2.21 63.33 2.21 63.57 2.25 63.34 2.22 63.48 2.2 63.36 2.23 63.55 2.23
70.81 2.02 71.06 2.06 70.9 2.03 71.16 2.06 70.86 2.02 71.08 2.0 70.87 2.07 71.08 2.01
77.88 2.69 78.21 2.71 78.03 2.73 78.32 2.74 77.99 2.75 78.21 2.72 78.04 2.74 78.21 2.69
85.61 2.82 86.03 2.81 85.8 2.87 86.11 2.81 85.72 2.86 86.05 2.83 85.76 2.79 86.06 2.85
92.84 2.78 93.29 2.7 93.01 2.81 93.45 2.8 92.98 2.78 93.31 2.8 93.04 2.77 93.39 2.76
100.45 2.72 100.95 2.68 100.69 2.7 101.14 2.72 100.55 2.74 101.07 2.74 100.71 2.73 101.05 2.74

4 chromosomes
GAS PN12A PN24A PTo12A PTo24A PTr12A PTr24A PR12A PR24A

L A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 61.53 2.76 61.18 2.78 61.24 2.69 61.13 2.78 61.24 2.79 61.11 2.86 61.23 2.67 61.15 2.63 61.17 2.78
110 68.68 2.73 67.71 2.63 67.92 2.61 67.68 2.62 67.92 2.61 67.67 2.64 67.81 2.59 67.66 2.57 67.77 2.63
120 75.46 2.81 74.93 2.85 75.17 2.73 74.86 2.71 75.17 2.83 74.82 2.89 74.99 2.78 74.82 2.79 74.94 2.73
130 82.45 2.89 81.14 2.81 81.47 2.96 81.14 2.93 81.47 2.96 81.13 2.95 81.27 2.9 81.11 2.93 81.23 2.89
140 89.94 2.82 88.29 2.84 88.62 2.85 88.22 2.71 88.62 2.85 88.18 2.79 88.44 2.82 88.21 2.78 88.36 2.76
150 97.68 2.91 95.27 2.85 95.66 2.79 95.15 2.87 95.66 2.79 95.17 2.76 95.41 2.83 95.19 2.86 95.27 2.73

PC12A PC24A PRd12A PRd24A P'12A P'24A Pgbmm12A Pgbmm24A

A SD A SD A SD A SD A SD A SD A SD A SD

61.11 2.76 61.2 2.75 61.1 2.77 61.2 2.87 61.22 2.78 61.17 2.85 61.13 2.74 61.2 2.77
67.62 2.61 67.81 2.67 67.7 2.89 67.84 2.76 67.63 2.71 67.8 2.67 67.69 2.68 67.82 2.61
74.74 2.88 74.98 2.86 74.89 2.72 75.1 2.83 74.79 2.74 75.03 2.71 74.82 2.89 75.02 2.93
81.02 2.87 81.3 2.91 81.09 2.92 81.38 2.92 81.05 2.9 81.25 2.89 81.06 2.92 81.34 2.93
88.08 2.87 88.41 2.85 88.25 2.72 88.56 2.78 88.11 2.67 88.38 2.74 88.23 2.83 88.48 2.92
95.01 2.61 95.44 2.69 95.16 2.71 95.49 2.79 95.1 2.88 95.43 2.71 95.13 2.85 95.45 2.67

5 chromosomes
GAS PN12A PN24A PTo12A PTo24A PTr12A PTr24A PR12A PR24A

L A SD A SD A SD A SD A SD A SD A SD A SD A SD

100 58.81 2.76 57.68 2.57 57.71 2.59 57.67 2.69 57.71 2.61 57.65 2.72 57.69 2.78 57.65 2.69 57.67 2.57
110 65.02 2.83 64.65 2.96 64.73 2.94 64.63 2.93 64.73 2.94 64.66 2.92 64.67 2.92 64.62 2.98 64.63 2.9
120 72.02 2.27 71.89 2.18 72.02 2.78 71.87 2.76 72.02 2.58 71.86 2.96 71.95 2.75 71.84 2.56 71.9 2.61
130 78.79 2.69 77.95 2.64 78.15 2.85 77.92 2.98 78.15 2.55 77.93 2.96 78.07 2.7 77.91 2.81 78.02 2.96
140 86.13 2.39 84.8 2.36 85.01 2.32 84.79 2.34 85.01 2.32 84.74 2.31 84.9 2.3 84.74 2.32 84.89 2.28
150 92.50 2.83 91.05 2.95 91.36 2.97 90.97 2.89 91.36 2.97 90.99 2.89 91.18 2.87 90.94 2.9 91.11 2.89

PC12A PC24A PRd12A PRd24A P'12A P'24A Pgbmm12A Pgbmm24A

A SD A SD A SD A SD A SD A SD A SD A SD

57.65 2.69 57.71 2.49 57.68 2.5 57.72 2.5 57.65 2.48 57.68 2.48 57.66 2.48 57.67 2.48
64.62 2.91 64.69 2.9 64.67 2.9 64.71 2.94 64.61 2.92 64.66 2.89 64.65 2.89 64.71 2.91
71.82 2.13 71.93 2.62 71.87 2.65 72.03 2.67 71.86 2.76 71.94 2.54 71.86 2.63 71.95 2.46
77.85 2.94 78.04 2.96 77.91 2.75 78.12 2.62 77.89 2.8 78.06 2.99 77.9 2.98 78.09 2.56
84.69 2.28 84.91 2.3 84.79 2.31 84.96 2.25 84.71 2.3 84.88 2.31 84.73 2.31 84.95 2.31
90.82 2.84 91.15 2.89 90.99 2.93 91.25 2.87 90.91 2.82 91.15 2.92 90.99 2.93 91.23 2.97

computed as the total ratio average. Table 24 shows the speed-ups achieved for
synchronous and asynchronous PIMs, where the best value is highlighted.
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Table 19: Speed-up considering UTD problem for all PIMs (See Tab. 1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.32 13.3 10.65 11.2 11.59 11.21 9.87 10.23 9.46 10.76 19.65 15.83 9.43 10.06 16.06 10.26

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
21.5 21.26 21.40 22.03 18.31 22.55 18.53 22.60 14.48 21.18 15.2 22.34 17.19 23.65 16.41 23.43

Table 20: Results for TMP with synchronous static PIMs using topologies: net,
torus, tree, ring and complete graph.

GAS PN12S PN24S PTo12S PTo24S PTr12S PTr24S

L A SD A SD A SD A SD A SD A SD A SD

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40 0.35 0.67 0.24 0.46 0.03 0.11 0.04 0.13 0.03 0.11 0.0 0.0 0.0 0.0
50 4.25 2.4 2.56 2.31 1.7 1.91 1.86 1.88 1.9 2.27 1.9 2.1 2.2 2.24
60 10.9 2.39 8.34 2.22 6.93 2.38 7.52 2.27 7.5 2.34 7.42 2.3 7.37 1.98
70 19.9 2.26 16.6 3.29 15.27 2.87 15.52 3.0 15.63 3.35 15.36 2.78 15.5 2.81
80 29.15 2.53 22.9 2.63 21.2 2.46 21.27 2.78 21.3 2.87 21.53 2.84 21.57 2.89

PR12S PR24S PC12S PC24S

A SD A SD A SD A SD

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.04 0.13 0.1 0.22 0.18 0.4 0.0 0.0
3.14 2.43 1.72 2.0 2.3 2.2 1.71 1.99
7.96 2.21 7.07 2.1 8.22 2.14 7.0 2.09
16.04 2.92 15.03 3.4 16.26 3.17 15.2 3.31
22.34 2.56 21.40 2.60 22.47 2.54 21.5 2.45

Table 21: Results for TMP with synchronous dynamic PIMs.

GAS PRd12S PRd24S P'12S P'24S Pgbmm12S Pgbmm24S

L A SD A SD A SD A SD A SD A SD A SD

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40 0.35 0.67 0.06 0.13 0.12 0.25 0.14 0.27 0.0 0.0 0.12 0.27 0.0 0.0
50 4.25 2.4 1.82 1.97 2.08 2.25 2.42 2.19 1.63 1.99 2.3 2.35 1.6 1.97
60 10.9 2.39 7.44 2.14 7.92 2.2 8.28 2.32 7.07 2.08 8.02 2.28 6.88 1.97
70 19.9 2.26 15.4 2.9 16.3 3.23 16.24 2.93 15.43 3.17 16.36 2.94 14.54 2.99
80 29.15 2.93 21.2 2.47 21.23 2.65 22.83 2.35 21.33 2.74 22.46 2.37 21.14 2.49

4.5 Experiments for N -Queens

For the experiments, thirty-one inputs with size n ∈ {50, 55, · · · , 195, 200} were
used, where n is the number of queens in an n × n board. The parameter con-
figuration presented in Table 9 was abstracted and used as below. For each entry
with n ∈ {50, 55, · · · , 195, 200} queens the following steps were performed: each
PIM including the sequential GAS were executed ten times; the average of these
ten runs was taken as solution for the input provided.

Tables 25, 26, 27 and 28 present the results for synchronous and asynchronous
PIMs, respectively. It is worth noting that for these experiments, it was not possible
to calculate the standard deviation since a single entry was used for each length.
The PTr24S was the best synchronous static PIM, while PRd12S and P'12S were the
ones that provided the best solutions among the synchronous dynamic models. In
experiments involving asynchronous PIMs, PC24A and P'12A were the best static
and dynamic, respectively.
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Table 22: Results for TMP with asynchronous static PIMs using topologies: net,
torus, tree, ring and complete graph.

GAS PN12A PN24A PTo12A PTo24A PTr12A PTr24A

L A SD A SD A SD A SD A SD A SD A SD

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40 0.35 0.67 0.18 0.45 0.03 0.11 0.0 0.0 0.0 0.0 0.02 0.06 0.0 0.0
50 4.25 2.4 2.36 2.15 2.03 2.08 1.94 2.0 1.8 2.09 1.88 2.17 1.73 2.02
60 10.9 2.39 8.22 2.18 7.63 2.1 7.58 2.24 6.9 2.2 7.18 2.22 7.23 2.0
70 19.9 3.26 16.58 3.14 15.97 3.23 15.7 3.04 14.87 2.79 15.28 2.94 15.03 3.28
80 29.15 2.53 23.1 2.17 21.93 2.83 21.97 2.3 21.37 2.53 21.63 2.45 21.57 2.5

PR12A PR24A PC12A PC24A

A SD A SD A SD A SD

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.64 0.03 0.0 0.07 0.21 0.03 0.11
1.57 1.75 1.73 2.12 1.86 1.95 1.53 1.8
8.87 2.13 6.87 2.14 7.48 2.2 7.3 2.11
15.83 3.24 14.9 3.03 15.4 3.03 15.23 3.06
24.33 2.62 21.43 2.49 21.93 2.79 21.67 2.35

Table 23: Results for TMP with asynchronous dynamic PIMs.

GAS PRd12A PRd24A P'12A P'24A Pgbmm12A Pgbmm24A

L A SD A SD A SD A SD A SD A SD A SD

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40 0.35 0.67 0.05 0.11 0.04 0.09 0.12 0.32 0.03 0.07 0.1 0.22 0.1 0.25
50 4.25 2.4 2.02 2.2 1.64 1.82 2.48 2.35 1.9 1.97 2.42 2.22 1.96 2.03
60 10.9 2.39 7.42 2.2 7.26 2.31 8.32 2.29 7.37 2.2 8.32 2.26 7.34 2.16
70 19.9 3.26 15.46 2.93 15.32 2.96 16.16 2.89 15.77 3.17 16.44 3.21 15.54 3.0
80 29.15 2.93 21.68 2.67 21.74 2.49 22.3 2.36 21.79 2.48 22.8 2.55 21.68 2.45

Table 24: Speed-up considering TMP for all PIMs (See Tab. 1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

14.78 9.55 5.81 12.01 6.9 15.35 7.28 14.63 14.51 15.09 8.25 12.05 15.04 11.98 10.7 8.49

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
8.77 10.97 8.69 8.9 12.56 8.55 5.66 8.79 13.97 7.88 8.61 6.71 14.47 11.78 15.26 12.77

The speed-ups are estimated running the GAS and each PIM ten times over a
single 250-queens input. The speed-up is computed as the ratio average of these
ten runs for each PIM. See Table 29 where the best speed-up is highlighted.

5 Discussion of the Results

Parameter setup is analyzed before discussing accuracy and speed-up.

5.1 Parameter setup

The values obtained in the parameter setup phase (Tables 3 to 10) for all PIMs and
applied in the experiments to the four case-studies are analyzed. The discussion
points out the parameter values of the models that provided better results and
presents the percentage of PIMs for which such values are used for each case-study.
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Table 25: Results for N -Queens with synchronous static PIMs.

N GAS PN12S PN24S PTo12S PTo24S PTr12S PTr24S PR12S PR24S PC12S PC24S

50 18.3 12.2 11.4 11.2 11.0 11.5 9.7 13.5 10.5 11.1 10.7
55 20.7 12.3 11.5 12.2 11.8 11.9 10.7 13.9 12.1 11.3 11.7
60 22.2 12.5 12.5 12.9 12.6 13.6 11.4 15.1 12.8 12.7 12.3
65 24.9 14.3 13.7 14.1 13.3 14.8 12.7 15.7 13.4 13.6 12.8
70 25.1 15.0 14.1 15.1 14.5 16.1 14.0 17.6 14.9 14.1 14.1
75 28.8 16.0 15.2 15.9 14.5 15.8 14.2 17.7 14.6 15.5 15.3
80 27.1 16.1 16.5 15.9 15.7 17.0 14.8 18.8 15.5 15.7 15.8
85 31.7 17.3 17.0 16.6 15.7 17.5 15.8 19.8 16.9 17.2 16.9
90 29.0 19.2 16.9 17.1 17.3 18.6 16.2 21.2 17.0 17.5 17.6
95 29.6 19.1 18.5 18.1 18.4 18.6 18.7 21.6 18.5 19.6 18.1
100 33.3 19.3 19.1 19.0 19.4 19.7 18.4 22.9 18.9 18.7 19.1
105 31.6 20.8 19.6 20.3 20.6 20.5 19.3 23.7 19.7 20.4 19.8
110 35.2 21.7 20.1 20.9 20.7 20.9 20.8 24.9 20.4 20.9 21.0
115 42.5 22.0 21.4 21.3 21.9 22.6 21.3 24.8 21.9 21.1 21.3
120 35.0 22.5 22.6 22.8 22.3 23.1 21.9 25.8 22.5 22.2 22.6
125 35.2 24.4 24.2 23.5 23.6 24.4 22.7 27.5 23.4 24.3 23.2
130 38.9 24.6 24.3 23.8 24.2 24.9 23.4 26.8 24.5 24.6 24.3
135 39.6 24.9 25.2 25.2 25.3 26.4 25.1 29.2 25.1 24.3 25.1
140 39.5 26.8 25.7 26.3 25.9 26.7 26.0 30.0 26.6 25.5 25.7
145 39.2 26.7 27.6 25.8 26.6 26.9 25.8 28.5 27.5 25.9 26.8
150 41.1 27.6 28.0 27.0 28.3 27.1 28.7 31.8 27.6 27.1 27.9
155 45.8 29.5 28.7 29.5 28.6 29.2 29.2 33.5 28.4 28.0 28.7
160 46.3 30.4 29.7 29.0 29.2 30.0 29.7 34.3 30.4 28.8 29.4
165 44.1 31.0 31.0 30.2 31.2 30.7 31.9 33.9 30.5 30.3 31.0
170 44.5 31.6 31.9 30.7 30.9 32.0 32.2 34.7 30.6 30.1 31.5
175 44.7 31.9 31.8 31.8 31.6 33.3 32.1 34.3 32.9 32.8 32.5
180 50.6 33.6 33.3 33.1 32.7 33.5 33.5 37.2 33.4 33.3 33.4
185 47.5 34.6 34.8 33.1 33.9 34.4 33.9 37.3 34.4 32.9 34.3
190 50.2 36.5 36.1 34.1 34.3 34.3 35.4 39.6 35.3 34.5 34.8
195 55.5 37.0 35.8 36.5 35.7 35.5 36.3 40.4 36.7 35.4 35.4
200 52.4 36.8 37.1 36.7 37.7 38.6 37.3 41.0 36.4 36.9 38.0

Crossover: for synchronous PIMs for UTD and URD, most models use a rate
above 0.8. The scenario is similar with asynchronous models in URD, however, for
asynchronous models in UTD, 75% of the models are set with probabilities less
than 0.8. In general, the best solutions were provided with a crossover equal to
0.96.

For TMP, synchronous PIMs use a rate at least 0.78, and 56.25% of them use a
probability greater than or equal to 0.9. Similar behavior is found in asynchronous
PIMs. For N -Queens, all synchronous and asynchronous models use probability
greater than 0.9 and approximately 85% of the models work with parameter fixed
at 0.98.
Mutation: the rate of 0.01 is the most used for synchronous PIMs: 68.75% for
UTD, 81.25% for URD, 62.5% forN -Queens and 62.5% for TMP. For asynchronous
PIMs, the mutation probabilities are greater than the synchronous versions. The
three synchronous PIMs providing good results for UTD work with a mutation
probability fixed at 0.01 (PR12S and P'12S) and 0.014 (PN12S). The best PIMs for
URD (PTr12S), TMP (Pgbmm24S) and N -Queens (PTr24S) have a mutation probability
fixed at 0.01.
Selection: synchronous and asynchronous PIMs in URD use a percentage equal
to or greater than 78%. When we look at the PIMs implemented for UTD, 62.5%
of synchronous models use a percentage above 90% while 62.5% of asynchronous
models have a configuration with a percentage equal to or less than 50%. For
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Table 26: Results for N -Queens with synchronous dynamic PIMs.

N GAS PRd12S PRd24S P'12S P'24S Pgbmm12S Pgbmm24S

50 18.3 11.1 11.5 11.0 10.3 12.3 11.0
55 20.7 11.2 11.9 12.1 11.9 13.2 11.9
60 22.2 12.8 13.1 13.4 12.5 12.6 12.7
65 24.9 13.1 14.1 13.5 13.2 16.7 13.7
70 25.1 14.5 13.9 14.2 13.6 15.1 13.9
75 28.8 14.1 15.2 15.1 14.6 17.9 15.3
80 27.1 15.5 16.0 15.4 15.6 16.1 16.4
85 31.7 16.6 16.6 17.1 16.3 19.9 16.7
90 29.0 17.6 17.5 16.9 17.6 17.2 17.6
95 29.6 17.7 18.1 18.0 18.1 20.8 18.6
100 33.3 19.9 19.5 19.3 19.3 19.3 18.7
105 31.6 19.4 20.3 19.5 20.2 23.2 19.9
110 35.2 21.0 21.3 20.6 21.4 20.4 21.5
115 42.5 21.4 22.4 22.0 21.7 23.8 22.5
120 35.0 22.7 22.5 22.3 22.2 23.0 22.8
125 35.2 23.8 23.1 22.9 23.0 24.2 23.7
130 38.9 24.3 24.1 24.6 24.9 24.1 25.1
135 39.6 24.3 25.0 24.9 25.0 26.9 24.5
140 39.5 25.2 26.3 26.1 25.9 25.9 26.0
145 39.2 26.8 27.4 26.5 27.1 30.1 27.1
150 41.1 27.2 27.5 26.7 27.0 26.9 27.4
155 45.8 28.3 28.9 28.6 28.9 30.4 29.2
160 46.3 28.4 29.8 29.5 29.7 29.7 28.9
165 44.1 30.0 30.7 30.6 30.4 33.3 30.9
170 44.5 30.2 32.5 30.5 32.1 30.7 31.5
175 44.7 31.9 32.2 31.3 32.1 34.8 31.8
180 50.6 32.4 34.2 33.1 33.5 33.5 32.1
185 47.5 32.9 35.2 33.4 34.8 35.3 34.1
190 50.2 34.1 35.3 35.0 35.3 33.6 36.0
195 55.5 36.4 36.1 35.7 35.6 39.2 35.9
200 52.4 36.8 37.1 35.5 37.1 35.8 37.5

TMP, 62% of synchronous PIMs use a percentage less than 50%, and only 25%
of asynchronous PIMs use rates below 50%. For N -Queens, the best synchronous
and asynchronous PIMs use values between 50% and 60% and only two PIMs have
selection rates adjusted above 80%. In general, for all problems, the best solutions
were provided by models using selection rates above 50%.
Replacement: The best results for the four problems were achieved by PIMs
using replacement rates between 36% and 72%. For URD, the synchronous PIMs
used replacement rates between 38% and 60%, while asynchronous PIMs work at a
higher rate than synchronous versions, which 62.5% of all asynchronous PIMs are
fixed with a rate greater than or equal to 60%. For UTD, 37.5% of the synchronous
PIMs use a rate less than 50%, while the remainder PIMs do not reach rates above
80%. Regarding asynchronous PIMs, only one PIM uses a rate below 60% (28%),
and most PIMs work with a rate between 60% and 70%, in addition, there is a
small group (18.75%) of models configured with a rate between 80% and 90%. For
TMP, 81.25%, and 50% of the synchronous and asynchronous PIMs, respectively,
use a rate above 60%. Emphasizing that, half of the other asynchronous PIMs are
fixed with rates below 50%. For N -Queens, in general, no PIM exceeds 74%, and
rates less than or equal to 50% were used by 50% and 25% of the synchronous and
asynchronous PIMs, respectively.
NumMigIndividuals: the most used configurations for the four case-studies have
at most 5 migrating individuals. The best adapted PIMs for TMP have 5 migrants,
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Table 27: Results for N -Queens with asynchronous static PIMs.

N GAS PN12A PN24A PTo12A PTo24A PTr12A PTr24A PR12A PR24A PC12A PC24A

50 18.3 11.7 10.6 11.0 11.0 12.5 10.8 11.3 11.2 12.0 10.6
55 20.7 11.7 11.7 12.2 12.2 13.0 11.5 11.6 11.2 12.3 11.7
60 22.2 12.6 12.6 13.7 12.5 12.7 12.4 12.8 12.9 12.5 11.9
65 24.9 13.4 12.9 13.7 13.3 14.5 13.7 14.3 13.1 13.8 12.8
70 25.1 14.0 14.0 14.5 14.4 16.1 14.0 14.8 14.2 14.7 14.1
75 28.8 15.4 14.3 15.1 15.4 16.2 15.2 15.4 15.3 15.5 15.6
80 27.1 16.1 15.5 15.5 16.1 16.7 15.5 16.3 16.1 17.0 15.5
85 31.7 17.5 16.8 17.1 16.6 18.0 16.9 17.0 17.0 17.2 16.8
90 29.0 17.5 17.8 17.3 17.5 18.7 17.1 17.9 17.2 17.9 16.9
95 29.6 19.0 18.4 17.9 18.7 19.3 18.2 18.9 18.2 19.4 17.7
100 33.3 18.7 19.1 20.2 19.7 21.0 18.6 19.3 18.8 18.6 19.2
105 31.6 20.2 20.5 19.9 20.2 21.4 19.6 21.0 20.6 20.6 19.3
110 35.2 20.0 21.3 20.2 21.2 22.4 20.6 22.0 21.0 20.7 20.6
115 42.5 20.7 21.2 21.0 22.4 23.2 21.8 22.4 21.1 22.3 21.2
120 35.0 22.4 23.4 22.4 23.2 23.5 22.4 23.4 23.5 22.2 23.0
125 35.2 22.5 24.3 22.9 23.3 23.6 22.9 23.8 23.5 23.8 22.9
130 38.9 24.1 24.5 24.0 24.6 25.6 23.9 24.7 24.7 24.0 24.8
135 39.6 25.1 25.3 24.9 24.7 26.1 24.2 25.3 25.6 25.4 24.5
140 39.5 25.4 26.0 25.7 26.5 27.4 26.3 24.7 25.9 26.6 25.9
145 39.2 26.6 26.6 27.2 27.0 28.4 26.6 26.8 27.1 27.3 26.5
150 41.1 27.6 27.0 27.5 28.1 27.8 27.4 26.9 28.0 27.2 27.2
155 45.8 27.9 28.6 29.4 28.8 28.8 28.0 28.0 29.6 27.9 27.3
160 46.3 28.8 30.1 29.0 30.0 30.3 29.8 29.8 29.8 29.2 29.7
165 44.1 30.0 30.9 31.0 29.4 31.0 31.0 30.6 31.2 30.7 29.6
170 44.5 30.8 31.3 31.3 32.4 32.0 31.6 31.6 32.5 32.0 30.8
175 44.7 31.7 31.7 33.2 31.8 33.5 33.0 32.7 32.0 32.8 31.8
180 50.6 33.7 32.4 33.6 34.6 33.1 33.3 32.8 34.5 33.4 34.0
185 47.5 34.4 33.8 33.9 33.7 34.6 34.7 33.0 35.8 34.8 34.1
190 50.2 34.7 35.6 34.8 36.6 35.8 35.7 35.0 34.9 36.2 34.6
195 55.5 35.6 35.7 35.5 37.0 36.7 36.0 36.5 36.8 36.3 35.3
200 52.4 37.2 37.9 36.3 37.4 37.9 38.2 37.4 38.2 37.3 37.0

whereas for URD, UTD and N -Queens, there is a heterogeneous scenario. The best
results for URD are provided by PTr12S and Pgbmm12S with the parameter set to
3 and 4 individuals; and for UTD, PN12S migrating 3 individuals PR12S, P'12S

migrating 9 individuals, while for N -Queens PTr24S migrate 7 individuals.
TypeEmIndividual: for asynchronous PIMs, selection of the best individuals
for emigration is the used configuration both for URD and UTD, and for 87.5%
and 56.25% of such PIMs for TMP and N -Queens, respectively. Emigration of
the best individuals is the most used configuration of synchronous PIMs for three
case-studies: 75% for UTD, 62.5% for N -Queens and 81.25% for TMP. Regarding
URD, 43.75% of all synchronous PIMs select emigration of random individuals,
37.5% the worst and 18.75% the best individuals. However, the best solutions
for TMP (Pgbmm24S) were obtained by emigrating random individuals, whereas in
UTD, the best solutions were provided by PN12S emigrating the best; PR12S and
P'12S emigrating random individuals.
EmPolicy: for URD and UTD, 50% of the synchronous PIMs sent clones and 50%
remove natives in the local island to be sent to the target island, while in asyn-
chronous PIMs for URD and UTD, respectively 75% and 62.5% use the strategy of
remove native individuals. For TMP, 75% of synchronous PIMs remove native indi-
viduals, while 62.5% asynchronous PIMs clone individuals. For N -Queens, 93.75%
of all synchronous and asynchronous PIMs use the strategy of cloning emigrating
individuals. Regarding accuracy, the PIM PTr24S that provides the best solutions
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Table 28: Results for N -Queens with asynchronous dynamic PIMs.

N GAS PRd12A PRd24A P'12A P'24A Pgbmm12A Pgbmm24A

50 18.3 10.5 11.0 10.7 10.9 11.6 11.8
55 20.7 11.7 11.8 11.6 11.8 12.0 12.3
60 22.2 13.5 12.5 12.9 12.7 12.4 11.8
65 24.9 13.5 13.7 14.1 13.9 14.2 13.7
70 25.1 13.9 13.6 13.6 14.7 15.1 14.6
75 28.8 15.3 14.9 15.3 14.7 15.5 15.6
80 27.1 16.0 15.8 15.9 15.2 16.3 15.7
85 31.7 16.5 17.2 16.6 17.3 17.3 17.0
90 29.0 17.4 17.3 17.3 17.0 17.7 17.3
95 29.6 18.3 18.3 18.6 18.6 18.2 18.0
100 33.3 19.0 18.7 19.0 18.4 19.3 19.7
105 31.6 20.3 19.6 19.6 19.9 19.8 20.1
110 35.2 21.0 20.4 20.6 21.1 20.4 21.0
115 42.5 21.9 22.0 21.0 20.5 21.1 21.8
120 35.0 21.7 21.4 23.3 22.6 22.4 23.5
125 35.2 22.5 23.0 22.1 23.4 23.0 23.8
130 38.9 23.9 24.4 23.9 24.8 24.0 24.3
135 39.6 24.5 25.2 24.6 24.7 25.4 26.0
140 39.5 25.7 24.8 25.6 25.7 25.6 26.5
145 39.2 26.4 26.5 26.1 27.3 26.9 28.0
150 41.1 26.6 27.8 26.8 27.0 27.2 28.5
155 45.8 28.3 28.4 27.7 27.7 28.7 29.0
160 46.3 29.7 29.9 28.3 29.4 28.9 30.3
165 44.1 30.4 29.9 28.7 30.5 30.8 30.4
170 44.5 31.1 30.8 30.6 31.2 30.8 32.1
175 44.7 31.6 32.2 32.4 32.6 32.1 33.1
180 50.6 32.5 32.6 32.8 32.9 33.1 34.0
185 47.5 33.8 33.7 32.5 33.5 33.8 34.4
190 50.2 34.4 34.9 33.5 35.7 34.9 36.4
195 55.5 36.2 36.2 35.1 37.0 35.5 37.4
200 52.4 36.4 35.5 37.0 36.7 36.0 39.1

Table 29: Speed-up considering N -Queens problem for all PIMs (See Tab. 1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12.54 9.34 10.9 8.62 9.06 9.04 10.38 8.7 11.86 8.63 9.75 10.03 11.67 8.42 11.86 9.47

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
12.56 9.57 12.92 9.08 9.49 9.52 11.72 9.5 10.23 10.21 13.95 12.45 12.62 8.97 12.72 8.83

for N -Queens clones individuals. For UTD, from the four PIMs that provided the
most competitive solutions only PR12S uses the cloning strategy, and the remain-
ing, PN12S, PTo12S and P'12S remove emigrants. For URD and TMP, the models
that provided the best solutions, respectively, PTr12S and Pgbmm24S also remove
emigrants.
TypeImIndividual: for URD 56.25% of the synchronous PIMs keep the strat-
egy of removing the worst individuals. Considering UTD, there is a balance with
43.75% of the synchronous PIMs removing the worst individuals, 37.5% random
individuals and 18.75% similar individuals and 93.75% of the synchronous PIMs
removing the worst individuals was the most popular configuration in TMP. Re-
moving the worst individuals on target island is the strategy used in all asyn-
chronous PIMs for URD, UTD and TMP, while for N -Queens, 50% of the asyn-
chronous models remove the worst and 31.25% remove random natives, and the
remaining replace similar individuals. For N -Queens, each synchronous PIM main-
tain the same strategy than its asynchronous version. The best solutions for URD
(PTr12S) and TMP (Pgbmm24S) were obtained by replacing the worst natives, N -
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Queens (PTr24S) replacing the random natives, while for UTD the best solutions
were obtained by synchronous PIMs: PN12S, removing random individuals; P'12S,
removing similar individuals; and PR12S removing the worst natives.
MigrationInterval: most models independent of the problem use a migration
interval less than or equal to 50% of the breeding cycle. Considering accuracy,
PIMs that best adapted to each problem are synchronous and use an interval
fixed in 56% for URD (PTr12S), 12% for TMP (Pgbmm24S) and 10% for N -Queens
(PTr24S). Lastly, the migration interval defined in the best PIMs for UTD are: 32%
for PN12S and 10% both for PR12S and P'12S.

5.2 Accuracy

All PIMs provide better (smaller) outputs than the sequential GAS for the four
(minimization) case-studies. The quality of the results is discussed, comparing
synchronous and asynchronous models.
URD: (Tables 12, 13, 14, and 15) concerning the synchronous PIMs with static
topologies, the best average solutions were provided by PTr12S and PR12S, while
the worst solutions were obtained by ring topology using 24-island (PR24S). For
synchronous dynamic PIMs the worst solutions were provided by P'12S, and the
best by Pgbmm12S. The best asynchronous static PIMs were PTr12A and PR12A, while
PN24A provided the worst solutions. For asynchronous dynamic PIMs, P'24A out-
puts the worst while Pgbmm12A the best solutions. Comparing synchronous versus
asynchronous PIMs, the experiments showed a balance as described: PN12S, PN24S,
PTr12S, PTr24S, PR12S, PC12S, PC24S and Pgbmm24S surpassed their asynchronous ver-
sions; PRd24S and PRd24A, Pgbmm12S and Pgbmm12A output similar results; and, PTo12A,
PTo24A, PR24A, PRd12A, P'24A and Pgbmm12A provided better solutions than their syn-
chronous versions. In general, the models that best and worst adapted to the URD
problem were the synchronous PIMs PTr12S and PR24S, respectively.
UTD: (Tables 17 and 18) The experiments showed that asynchronous models
are not competitive regarding their synchronous versions. Synchronous and asyn-
chronous 12-island PIMs provided better solutions than their 24-island versions,
except for Pgbmm24S that gives better solutions than Pgbmm12S. The best synchronous
static PIMs are PN12S, PTo12S, and PR12S, using 3×4-net, torus, and ring topologies,
respectively. Focusing on synchronous dynamic PIMs, PRd24S outputs the worst
solutions while P'12S the best ones, however, surpassing PN12S, PTo12S, and PR12S

only for entries containing 5 chromosomes. Analyzing the results of asynchronous
PIMs, a different scenario is found, the best static model, PC12A, surpasses the
best dynamic PIM P'12A in all experiment scenarios.

Fig. 4: Syncrhonous 12- vs 24-island PIMs.

TMP: (Tables 20, 21, 22, and
23) For synchronous PIMs,
most (62.5%) 24-island mod-
els were better adapted to the
problem than their 12-island
versions as seen in Figure 4.
Regarding synchronous and
asynchronous static PIMs, the
best models were PN24S and
PTo24A, respectively. For syn-
chronous PIMs, the dynamic
model Pgbmm24S was the one
that best adapted. The model PRd24A provided the best results in asynchronous
dynamic PIMs but was surpassed by PTo24A that computed the best outputs for



On the Behavior of Parallel Island Model Genetic Algorithms 33

asynchronous static PIMs. The synchronous dynamic PIMs provided on average,
better quality solutions than their asynchronous versions, the exception is the
PRd24A which has better solutions than the synchronous version. The scenario is
different for static PIMs; versions from the tree topology showed similar results
with 12-island and the synchronous models PTo24S, PR24S and PC12S were overcome
by their respective asynchronous versions.

Fig. 5: Best synchronous PIMs for N -Queens.

N-Queens: (Tables 25, 26, 27,
and 28) Figure 5 illustrates the
behavior of the best synchronous
PIMs; namely PTr24S, PRd12S and
P'12S. The experiments show
that there is a slight advan-
tage of the synchronous static
model PTr24S regarding the dy-
namic models PRd12S and P'12S,
when we look at inputs of small
size but ,in general, the two syn-
chronous dynamic PIMs deliver
better solutions. Evaluating the
quality of the solutions of the best asynchronous PIMs, the dynamic model P'12A is
superior to the static model PC24A. Comparing static PIMs, the synchronous mod-
els PTo12S, PTo24S, PTr12S, PTr24S and PC12S, and the asynchronous models PN12A,
PN24A, PR12A, PR24A and PC24A provided better solutions than their respective asyn-
chronous and synchronous versions. Concerning dynamic PIMs, the synchronous
models PRd12S and Pgbmm24S, and the asynchronous models PRd24A, P'12A, P'24A

and Pgbmm12A surpassed their asynchronous and synchronous versions, respectively.
An observation is the fact that the synchronous models PRd12S and P'24S and their
asynchronous versions provided results that alternate their quality. Regarding the
number of islands, all dynamic 12-island models were better than their 24-island
versions except Pgbmm12S that is worse than Pgbmm24S and PRd12A and PRd24A that
provide very similar results. For synchronous static PIMs, only the 24-island mod-
els PTr24S and PR24S are better than their 12-island versions. Considering asyn-
chronous PIMs, only PTr24A and PC24A surpassing 12-island versions.

5.3 Speed-up

Increasing the number of islands, asynchronous behaviour and sparse topologies
would increase speed-up; however, when calibrating the parameters to improve
accuracy, this statement may not be valid. In fact, the expected running time
behaviour of PIMs is not observed in Tables 16, 19, 24, 29 since all models use
different parameter configurations. Indeed, a simple experiment for all case-studies
in which all PIMs use the same breeding cycle parameters of their sequential GAS

versions (Table 11) and migration parameters were set uniformly (as EmPolicy =
2, TypeEmIndividual = 1, NumMigIndividuals = 13, TypeImIndividual = 1, Migra-
tionInterval = 10%) provided, as expected, better speed-ups for all asynchronous
PIMs than for their synchronous versions, better speed-ups for all 24-island PIMs
than for their 12-island versions. Also, the running times of PIMs with dense
topologies such as torus and complete graphs are longer than the running time
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of sparse PIMs such as those with tree and ring topologies. Finally, and also as
expected, in the category of dynamic PIMs the better running times were obtained
by the random models since they do not execute additional comparisons to classify
islands. In the remaining of this section, we analyze the impact on the running
time for all case-studies taking into account the weight of the parameter setup
fixed (in Tables 3 to 10) to improve the accuracy of the results.
URD: (Table 16) Asynchronous and synchronous 24-island PIMs presented bet-
ter speed-ups. Analyzing synchronous models, PR24S presented the best speed-up
(7.17), however the accuracy of its results is low, while PTr12S, which provided the
best solutions, achieved the worst speed-up (4.86). When analyzing the speed-ups
of PIMs PR12S(5.35), and Pgbmm12S(5.63), models with accuracy close to PTr12S,
there is a slight improvement in the running time, however, they did not provide
the best speed-ups. The synchronous PIMs are responsible for providing the best
solutions. Concerning speed-up, only 31.25% of the synchronous models present
better speed-ups than their asynchronous versions, as shown in Table 16. The
small running time advantage of asynchronous over synchronous PIMs can be ex-
plained by the values of parameters fixed combined with the overhead imposed in
the synchronization of the evolutionary process in the synchronous versions.
UTD: (Table 19) for synchronous PIMs, the best speed-up was given by PRd12S

(19.65) which presents competitive solutions with several other models(PN24S,
PTo24S, PTr24S, PR24S PC24S, PRd24S and Pgbmm24S), while the smallest speed-up was
delivered by the P'12S, one of the best solution providers for the UTD problem.

Asynchronous PIMs did not present better accuracy than synchronous versions,
but in relation to speed-up they were faster being the best speed-up provided
by P'24A(23.65), a model that provided non-competitive accuracy results. The
crossover and selection parameters in synchronous PIMs are higher than those
fixed for their asynchronous versions (Tables 5 and 6) causing a slower breeding
cycle, which increments the running time of synchronous PIMs.
TMP: (Table 24) The running times of many asynchronous PIMs have been
overcome by their synchronous versions, which may be explained by the small
values set for the breeding cycle parameters of many synchronous PIMs (Tables 7
and 8). The synchronous PIM PTr24S provided the best speed-up (15.35) and also
competitive outputs surpassing the accuracy of most than 50% of all PIMs. The
synchronous PIM Pgbmm24S that is the one that best adapted to TMP, obtained a
small speed-up equal (8.49), being approximately 80% slower than PTr24S.

Regarding the number of islands, synchronous 12-island PIMs have speed-ups
that were surpassed by their 24-island versions for the topologies torus, tree, ring,
complete graph and Random, and asynchronous 12-island PIMs were surpassed
by their 24-island versions for the topologies net, torus and ring. In addition, the
worst speed-ups were obtained by the synchronous and asynchronous 12-island
models PTo12S (5.81) and PR12A (5.66), respectively. Better running times of 12-
island models than those of their 24-island versions are explained by setting of
crossover and/or selection parameters with lower values than those of their 24-
island versions (Tables 7 and 8).
N-Queens: (Table 29) The best speed-ups were obtained by the synchronous and
asynchronous 12-island; namely, PN12S (12.54) PRd12A (13.95). However, only the
model PN12S presented competitive accuracies. The PIMs with the best accuracies
(PTr24S, PRd12S and P'12S, PC24A, and P'12A) are at the forefront of the worst
running times, the exception is the asynchronous PIM P'12A that delivered the
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fourth best speed-up. In general, 12-island PIMs presented better speed-ups than
their 24-island versions. Such behavior is explained by the values of the breeding
cycle parameters, particularly the selection parameter (Tables 9 and 10).

5.4 Statistical Analysis

For validating the results of the experiments, statistical tests (Friedman and Holm)
were applied according to [15] (see also [25,16]). These statistical tests were applied
in several related works such as [56,51,13,53].

The statistical tests use the best static and dynamic models both for the syn-
chronous and asynchronous PIMs. The sample of each model is the set of outputs
from the experiments, except for TMP and N -Queens, for which another set of
results has been obtained. The sample size for URD and UTD problems is 100,
whereas for TMP and N -Queens problems is 50. Since the case-studies are min-
imization problems, to apply properly the statistical tests, each output x (in a
sample) was pre-processed by computing its multiplicative inverse (i.e., 1/x).

The methodology proposed in [15] is as follows:

– The Friedman test is applied to test the null hypothesis that the performance
of all algorithms is the same over a given set of inputs.

– If the null hypothesis is rejected in the previous step then the Holm test is
applied to test the null hypothesis that the performance of a control algorithm
is the same concerning one of the other algorithms for a given set of inputs.

The Friedman and Holm tests are available in the CONTROLTEST pack-
age at https://sci2s.ugr.es/sicidm. The significance level used in the tests is
α = 0.05. The Holm test uses as control PIM the one with the best (minimum)
rank obtained by the Friedman test. PIMs with statistically significant difference
regarding the control PIM (p-value ≤ α/i) have their p-value highlighted in Tables
30 to 35.

Table 30 shows the results of the Holm test for URD, for which PTr12S appears
as control PIM in 3 cases out of 6. However PTr12S just has statistically significance
difference regarding GAS.

Tables 31, 32, and 33 show the results of the Holm test for UTD considering
3, 4 and 5 chromosomes. From these tables, the PIMs that appear as control
algorithms in most cases are, PR12S for Table 31 (4 cases out of 6), PN12S for Table
32 (4 cases out of 6), and P'12S for Table 33 (5 cases out of 6).

Table 34 shows the results of the Holm test for TMP, where Pgbmm24S appears
as the control algorithm in all cases. The null hypothesis of the Friedman test for
L = 30 was not rejected.

Table 35 shows the results of the Holm test for N -Queens. The sample consists
of 50 instances of the problem varying from 50 to 246 (50, 54, . . . , 246). Here, the
model P'12A appears as the control algorithm. Since the experiments were con-
ducted with a larger amount of input due to the needs of the statistical methods
used, the results presented in Table 35 confirm what had already been observed
in the discussion in Section 5.2: as the number of queens is increased, the asyn-
chronous PIM P'12A starts to stand out.
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Table 30: Holm test for URD.

L Control i Algorithm Rank P-value α/i
Algorithm

100

4 GAS 4.89 5.04E-31 0.0125
PTr12A 3 Pgbmm12S 2.67 0.1026 0.0167

(Rank: 2.30) 2 Pgbmm12A 2.66 0.112 0.025
1 PTr12S 2.47 0.46 0.05

110

4 GAS 4.97 8.62E-30 0.0125
Pgbmm12S 3 PTr12A 2.65 0.3252 0.0167

(Rank: 2.435) 2 PTr12S 2.49 0.788 0.025
1 Pgbmm12A 2.445 0.96 0.05

120

4 GAS 4.97 8.01E-32 0.0125
PTr12S 3 Pgbmm12S 2.78 0.0517 0.0167

(Rank: 2.35) 2 PTr12A 2.47 0.592 0.025
1 Pgbmm12A 2.42 0.75 0.05

130

4 GAS 5.00 1.09E-33 0.0125
PTr12S 3 Pgbmm12S 2.73 0.0491 0.0167

(Rank: 2.29) 2 PTr12A 2.54 0.273 0.025
1 Pgbmm12A 2.43 0.55 0.05

140

4 GAS 5.00 5.04E-31 0.0125
Pgbmm12S 3 PTr12A 2.64 0.3037 0.0167

(Rank: 2.41) 2 Pgbmm12A 2.49 0.737 0.025
1 PTr12S 2.46 0.81 0.05

150

4 GAS 5.00 1.61E-34 0.0125
PTr12S 3 Pgbmm12S 2.69 0.0517 0.0167

(Rank: 2.26) 2 PTr12A 2.54 0.210 0.025
1 Pgbmm12A 2.51 0.27 0.05

6 Related work

PIMs for GAs were first studied by Grosso in [29]. From the controlled experiments,
the author found that the improvement of average population fitness was faster in
islands whose population is smaller than in a single large population. Grosso also
observed that when the islands were isolated, the quality of the solution found
after convergence was worse in the models than in sequential GA. Regarding the
migration interval, the results showed that high frequency leads to premature
convergence and balancing is the best choice to make the models competitive.

In [61], Tanese performed an experimental study about frequency of migrations
and amount of individuals exchanged at each migration. Tanese compared the run-
time of PIMs with and without communication. Both parallel and sequential GA
have the same amount of individuals (256 individuals) running for 500 generations.
From the experiments, it was noticed that PIMs without communication could find
individuals (at some point during execution) with solutions presenting quality as
a GA with a single population of individuals, but the average quality of the final
population was much lower in isolated PIMs. On the other hand, for PIMs with
a migratory interval, the end average quality increased significantly and in some
cases was better than the final quality in a sequential GA. However, the author
reiterated that this result must be interpreted with caution because the GA did
not fully converge after 500 generations.

A very important theoretical question is whether (and under what conditions)
PIMs can find better solutions than sequential GAs. In [58], Starkweather et al.
observed that relatively isolated islands converge to different solutions, and mi-
gration is an essential part to achieve good quality solutions. The authors also
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Table 31: Holm test for UTD considering genomes with 3 chromosomes.

L Control i Algorithm Rank P-value α/i
Algorithm

100

5 GAS 6.00 5.48E-35 0.01
PR12S 4 P'12A 3.34 0.0222 0.0125

(Rank: 2.73) 3 PC12A 3.24 0.0539 0.0167
2 PN12S 2.86 0.637 0.025
1 P'12S 2.82 0.75 0.05

110

5 GAS 6.00 3.66E-37 0.01
PN12S 4 P'12A 3.48 0.0012 0.0125

(Rank: 2.63) 3 PC12A 3.26 0.0164 0.0167
2 PR12S 2.87 0.354 0.025
1 P'12S 2.74 0.66 0.05

120

5 GAS 6.00 9.63E-37 0.01
P'12S 4 P'12A 3.65 1.57E-4 0.0125

(Rank: 2.65) 3 PC12A 3.07 0.1124 0.0167
2 PN12S 2.81 0.533 0.025
1 PR12S 2.81 0.53 0.05

130

5 GAS 6.00 2.88E-37 0.01
PR12S 4 P'12A 3.65 9.90E-5 0.0125

(Rank: 2.62) 3 PC12A 3.07 0.0890 0.0167
2 P'12S 2.92 0.265 0.025
1 PN12S 2.72 0.71 0.05

140

5 GAS 6.00 4.57E-43 0.01
PR12S 4 P'12A 3.77 8.88E-8 0.0125

(Rank: 2.36) 3 PC12A 3.28 5.07E-4 0.0167
2 PN12S 2.85 0.061 0.025
1 P'12S 2.73 0.16 0.05

150

5 GAS 6.00 1.02E-40 0.01
PR12S 4 P'12A 3.69 3.66E-6 0.0125

(Rank: 2.46) 3 PC12A 3.36 6.70E-4 0.0167
2 P'12S 2.86 0.131 0.025
1 PN12S 2.61 0.57 0.05

reported that PIMs with moderate migration interval are propitious to find better
solutions.

The success of PIMs with respect to Eldredge and Gould’s theory of punctu-
ated equilibrium is discussed by Cohoon et al. in [12]. According to this theory,
evolution is characterized by long periods of isolated island evolution, punctuated
by periods of geologically rapid changes associated with migration events [28]. The
authors pointed out that there is a high probability of a GA reaching premature
convergence, so it would be a good idea to separate isolated species into subpopu-
lations. By adding individuals of different species to a subpopulation belonging to
a respective island after convergence, new blocks of genetic material would become
available; thus, through the management of the parameters involved in the migra-
tion process a PIM could, in part, avoid the problem of premature convergence.

Bianchini and Brown in [7] performed experiments and concluded that adding
more islands to the PIMs is more advantageous than increasing the total popula-
tion size.

In [64], Whitley et al. reviewed the benefits of using island model to improve the
accuracy of results regarding sequential GAs. From a formal theoretical study, the
authors statistically estimated the number of islands that a PIM needs to provide
at least equivalent results when compared to a sequential GA. The quantity M ′

of islands is estimated as: M ′ = ln(1− yt)/ ln(1− xt/M), where M is the current
number of islands, yt the probability of the sequential GA to solve the problem,
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Table 32: Holm test for UTD considering genomes with 4 chromosomes.

L Control i Algorithm Rank P-value α/i
Algorithm

100

5 GAS 5.92 1.84E-30 0.01
PN12S 4 PC12A 3.16 0.3075 0.0125

(Rank: 2.89) 3 P'12A 3.12 0.3847 0.0167
2 PR12S 2.99 0.705 0.025
1 P'12S 2.91 0.92 0.05

110

5 GAS 5.95 1.11E-34 0.01
PR12S 4 P'12A 3.25 0.0359 0.0125

(Rank: 2.70) 3 PC12A 3.22 0.0494 0.0167
2 PN12S 3.00 0.257 0.025
1 P'12S 2.87 0.508 0.05

120

5 GAS 4.63 2.63E-9 0.01
PN12S 4 P'12A 3.68 0.0182 0.0125

(Rank: 3.05) 3 PC12A 3.33 0.2899 0.0167
2 P'12S 3.24 0.473 0.025
1 PR12S 3.05 1.00 0.05

130

5 GAS 5.99 2.81E-34 0.01
PN12S 4 P'12A 3.34 0.0298 0.0125

(Rank: 2.76) 3 PC12A 3.20 0.0963 0.0167
2 PR12S 2.90 0.597 0.025
1 P'12S 2.79 0.92 0.05

140

5 GAS 6.00 5.12E-36 0.01
PR12S 4 P'12A 3.41 0.0061 0.0125

(Rank: 2.68) 3 PC12A 3.29 0.0211 0.0167
2 PN12S 2.85 0.533 0.025
1 P'12S 2.76 0.78 0.05

150

5 GAS 6.00 2.26E-37 0.01
PN12S 4 P'12A 3.66 8.47E-5 0.0125

(Rank: 2.62) 3 PC12A 3.18 0.0327 0.0167
2 P'12S 2.80 0.484 0.025
1 PR12S 2.73 0.68 0.05

xt representing probability of GA solve a sub-problem belonging to the problem,
and xt/M the probability of any island to solve the problem addressed.

Selection pressure caused by the migration was evaluated by Cantú-Paz in
[9]. According to the author, the response to super linear speed-up is linked to
population convergence caused by additional selection pressure due to some mi-
gration policies. From the experiments, it was observed that convergence happened
quickly with a migration policy, where good individuals selected on local islands
replace the worst individuals on the target island; that random individuals re-
placing random individual has a moderate impact; and, that convergence happens
slowly when both migrants and immigrants are random. The author states that
the difference between the faster and slower convergence times are quite large and
therefore, that the migration policy must be carefully investigated in PIMs.

In [1], Alba and Tomassini described parallelism techniques for EAs in general
(GA, Evolutionary Programming, Evolutionary Strategy). The authors discussed
the advantages and disadvantages of parallel EAs mentioning successful applica-
tions. Also, they discussed how decentralization of emigration and immigration
can be beneficial in the search to improve the run-time as well as the use of tools
to implement parallel EAs.

The effects of migration policy in PIMs are investigated by Hong et al. in [34],
who proposed a model that adjusts the migration interval. Each island has its
migration interval. Once a target island receives immigrants from a local island, it
computes the fitness average of the target island; if the accuracy of the population
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Table 33: Holm test for UTD considering genomes with 5 chromosomes.

L Control i Algorithm Rank P-value α/i
Algorithm

100

5 GAS 5.75 7.99E-26 0.01
PR12S 4 PC12A 3.16 0.4611 0.0125

(Rank: 2.97) 3 P'12A 3.12 0.5580 0.0167
2 P'12S 3.00 0.910 0.025
1 PN12S 2.99 0.94 0.05

110

5 GAS 5.95 1.63E-31 0.01
P'12S 4 P'12A 3.16 0.2568 0.0125

(Rank: 2.86) 3 PC12A 3.12 0.3165 0.0167
2 PR12S 2.98 0.637 0.025
1 PN12S 2.92 0.82 0.05

120

5 GAS 5.90 1.78E-33 0.01
P'12S 4 P'12A 3.40 0.0086 0.0125

(Rank: 2.71) 3 PC12A 3.15 0.0963 0.0167
2 PN12S 2.92 0.416 0.025
1 PR12S 2.91 0.45 0.05

130

5 GAS 5.95 6.68E-32 0.01
P'12S 4 P'12A 3.34 0.0563 0.0125

(Rank: 2.84) 3 PC12A 3.12 0.2814 0.0167
2 PN12S 2.88 0.880 0.025
1 PR12S 2.86 0.94 0.05

140

5 GAS 5.99 8.93E-34 0.01
P'12S 4 P'12A 3.33 0.0394 0.0125

(Rank: 2.79) 3 PC12A 3.16 0.1564 0.0167
2 PR12S 2.87 0.748 0.025
1 PN12S 2.84 0.85 0.05

150

5 GAS 6.00 3.66E-37 0.01
P'12S 4 P'12A 3.63 1.57E-4 0.0125

(Rank: 2.63) 3 PC12A 3.20 0.0312 0.0167
2 PR12S 2.78 0.558 0.025
1 PN12S 2.75 0.64 0.05

improves then the emigration interval of the local island increases; otherwise, it
decreases. The experiments showed that the proposed PIM provides better results
than models with static migration intervals.

In the same direction, a migration policy for PIMs with target island defined by
attractiveness was proposed by Duarte et al. in [17]. In this policy, migrations are
synchronous to occur point to point, where links between islands are unidirectional
and weighted (with values in the interval [0, 1]) dynamically according to the at-
tractiveness of the local to the target island. The weights represent the probability
of each communication being used for a migration. When emigrants reach target
islands, they are kept in the migrant populations for several generations, before
being included in native populations. Native and migrant individuals participate
in the breeding cycle. To be connected to an attractive island, such island must
have higher weights than the other possible target islands. Experiments were per-
formed for ten optimization problems observing that the proposed PIM on average
provided better results than others and an excellent performance. Subsequently,
Duarte et al. in [18] presented a new evaluation strategy that changes the way to
define the attractiveness between islands, in such a manner that islands become
more or less attractive according to the quality of their solutions. The hybrid
model consists of five islands and produced better solutions than those given by
the model in [17]. Recently, Duarte et al. ([19]) optimized the hybrid model con-
cerning how attractiveness and the weights of the connections between the islands
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Table 34: Holm test for TMP.

L Control i Algorithm Rank P-value α/i
Algorithm

40

4 GAS 4.88 1.54E-14 0.0125
Pgbmm24S 3 PRd24A 2.58 0.6810 0.0167

(Rank: 2.45) 2 PN24S 2.55 0.752 0.025
1 PTo24A 2.54 0.78 0.05

50

4 GAS 5.0 2.61E-20 0.0125
Pgbmm24S 3 PTo24A 2.74 0.0369 0.0167

(Rank: 2.08) 2 PRd24A 2.74 0.037 0.025
1 PN24S 2.44 0.25 0.05

60

4 GAS 4.80 7.02E-22 0.0125
Pgbmm24S 3 PRd24A 3.16 9.55E-6 0.0167

(Rank: 1.76) 2 PN24S 2.64 0.005 0.025
1 PTo24A 2.64 0.01 0.05

70

4 GAS 5.0 2.27E-26 0.0125
Pgbmm24S 3 PRd24A 3.11 3.34E-6 0.0167

(Rank: 1.64) 2 PTo24A 2.65 0.001 0.025
1 PN24S 2.60 0.002 0.05

80

4 GAS 4.99 2.07E-27 0.0125
Pgbmm24S 3 PRd24A 3.55 3.12E-10 0.0167

(Rank: 1.56) 2 PTo24A 2.52 0.002 0.025
1 PN24S 2.38 0.01 0.05

Table 35: Holm test for N -Queens.

N Control i Algorithm Rank P-value α/i
Algorithm

50 to 246

5 GAS 6.00 5.59E-19 0.01
P'12A 4 PC24A 3.50 0.0265 0.0125

(rank: 2.67) 3 P'12S 3.10 0.2505 0.0167
2 PTr24S 2.89 0.557 0.025
1 PRd12S 2.84 0.65 0.05

are computed. They considered the differences for the migration strategies previ-
ously proposed in [17] and [18], focusing on the operations and information used to
define the attractiveness and the methodology for adjusting the weights of the con-
nections between islands. The adjustment operations were inspired by the natural
phenomenon known as stigmergy [11], and the experiments were conducted with
fifteen problems reported in [41]. Results showed that the new strategy provides
competitive quality solutions.

A new PIM concept with a unidirectional ring (asynchronous) communication
topology based on probability models was presented by Jaros and Schwarz in [38].
The idea is to replace migrations of individuals by the transference of a proba-
bility model that is responsible for producing the new population. The transfer
takes into account the probabilistic model of emigration and the resident model
that is the receiver and will be modified by the emigration model through rules
of adaptive learning involving probability statistics ([5], [46]). The proposed PIM
was compared with its sequential version, a PIM containing migration of individ-
uals, and two other sequential algorithms that use probability models. Authors
conclude that such PIM with probability is better than the PIM with migration
of individuals, and in addition that migrating the best individuals favors the PIM
with probability. On the other hand, the PIM with probability does not exceed
its sequential version, and depending on the input size, provides inferior results.
Concerning running time, both algorithms have reached speed-up close to eight.
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Sudholt in [60] surveyed the design and analysis of parallel EAs explaining when
and how it is possible to obtain accelerations on sequential EAs. Sudholt explains
the challenges encountered when dealing with PIMs, as they represent interactive
stochastic processes, where dynamics are determined by various design parameters,
such that choices can drastically affect their performance and accuracy.

in [55], Skolicki and De Jong studied the influence of migration interval to-
gether with number of immigrants and emigrants for PIMs. One observation from
the experiments is that the migration interval seems to be a dominant factor, with
number of immigrants and emigrants generally playing a secondary role. Experi-
ments also show that frequent migrations lead islands to dominate others and to
lose global diversity before they can exchange genetic material. On the other hand,
migrations rarely caused degraded performance due to slow convergence.

A study analyzing synchronization policy aspects in terms of the advantages
and disadvantages of synchronous and asynchronous migration in PIMs was given
by Fernández et al. in [24]. It is suggested that asynchronous migration is advan-
tageous with respect to its synchronous counterpart in terms of accuracy. Izzo et
al. [36] also advocated the asynchronous migration policy and proposed a hetero-
geneous PIM from variations of the differential evolution algorithm using asyn-
chronous migration. The asynchronous migration was justified because it is more
intuitive and suitable for distributed computing over TCP/IP, where resources
might become available/unavailable at any time. From the experiments, the pro-
posed PIMs obtained better performance and accuracy when compared to their
sequential versions. In [2], Alba and Troya studied synchronous and asynchronous
models with GA to explore the migration interval with an elitist policy where the
best emigrants are sent to replace the worst individuals on the target islands. From
experiments, it was observed that PIMs are superior to their sequential version
regarding the quality of solutions and that asynchronous models present speed-ups
superior to synchronous models, conserving the quality of the solutions.

Liu and Layland [43] analyzed a PIM for the dynamic Maze problem. The
authors proposed a PIM with communication occurring at regular intervals. The
number of islands and migration interval in the PIM were carefully studied. Ex-
periments were performed with complete graph and ring topologies, and the best
performances were obtained with the ring topology. It is worth noting that in the
extreme case in which migration occurs in each generation, the proposed PIM
cannot explore the search space efficiently, providing solutions with poor quality.
On the other hand, when migration occurs with low frequency, the proposed PIM
can avoid premature convergence having consequently a broader exploration of
the search space, reaching good results.

Authors of the current work have been using island models from GA exploring
the migration policy to solve complex problems in the genetic area. In [50], the
authors proposed a PIM for a sequential GA introduced in [52] and applied to
solve UTD problem. The proposed PIMs used ring and complete graph commu-
nication topologies with a regular migration policy repeated at each generation,
and reused parameters calibrated for the sequential GA. However, the accuracy
provided by these PIMs was not better that the one of the sequential GA. Later,
in [53], authors worked out the calibration of the parameters related to migration
policies and breeding cycle over PIMs considering other static topologies such as
torus, complete graph, tree, and net, and a migration dynamics which explores the
characteristics of individuals. As result, the outputs obtained improved both ac-
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curacy and running time. After that, the proposed PIMs were applied to the URD
problem in [13], improving accuracy and performance of the best-known GA.

Several recent works develop related research. In [54], four of the authors of
the current paper analyzed PIMs for GA and two additional metaheuristics: self-
adjusting Particle Swarm Optimization (PSO) and Social Spider Algorithm (SSA),
but restricted to the synchronous PIMs and performing experiments only for the
case-study of URD. The experiments were conducted with islands with small pop-
ulations of n individuals, for inputs of length n with different migration policies.
Results showed that in general, static PIMs for PSO output the best solutions,
while PIMs for GA are competitive and PIMs for SSA present the worst solutions
regarding their sequential versions. In compensation PIMs for SSA provided the
best speed-ups when compared to the SSA and GA models.

In [49], Saito et al. presented a method for parallel speed-up of decomposition-
based multi-objective evolutionary algorithms (MOEA/D). The method uses many-
core environments such as GPUs and seeks to prevent degradation in the accuracy
of solutions. To avoid degradation a virtual overlapping zone is defined between
partitions, and individuals are selected for mating and migration by evaluating
individuals in this zone using weight vectors of adjacent partitions. The method is
compared with sequential MOEA/D, no-migration parallel MOEA/D, and a paral-
lel MOEA/D with standard migration in which at a certain interval, the worst five
solutions of each island are replaced by the five best solutions from the neighboring
islands. The case-study was a two-objective knapsack problem with constraints,
and experiments were conducted in various scenarios, varying the number of is-
lands, population size and number of evolutionary cycles. The results showed that
the proposed method is effective in improving diversity of solutions and running
time.

Federici et al. in [23], presented the Evolutionary Optimization at Sapienza
(EOS) that solves real-world (unconstrained and constrained) problems of space
trajectory design and implements a synchronous heterogeneous PIM paradigm.
The heterogeneity is achieved by varying the mutation method distributed in a
spiral archipelago in which the islands communicate by trails (analogous to the
trail on a hard disk) using a ring topology. The adopted migration policy replaces
the worst natives on the target islands by the best immigrant individuals. Authors
report that EOS succeeds to deal with many variables and the presence of multiple
local minimums, as in the case of multiple gravity-assist trajectories, the ascent
trajectory of a rocket, and multi-target rendezvous missions.

A practical study to avoid failures of refrigerated showcases placed in conve-
nience stores and supermarkets was proposed by Otaka et al. in [47]. This paper
proposes a fault detection method by pasting based artificial neural networks us-
ing parallel multi-population modified brain storm optimization and correntropy
(see [45]). Variations with static ring, trigonal pyramid and cube topologies were
used with an elitist migration policy where the best immigrants replace the worst
natives every ten generations. The experiments were conducted with a small num-
ber of islands (2, 4 and 8). Statistical tests showed the superiority of the proposed
model using the trigonal pyramid topology with four islands indicating a success
rate of approximately 99.4% of the samples presented.
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7 Conclusions and Future Work

To the best of our knowledge, there are no previous works addressing our method-
ology in terms of carefully analyzing each parameter involved in migration policies
for synchronous and asynchronous PIMs. We use an exhaustive experimental ap-
proach exploring the potential of each migration policy. From this mindset, we
proposed and analyzed homogeneous PIMs for four case-studies: Unsigned Rever-
sal Distance, Unsigned Translocation Distance, Scheduling Task Mapping Problem,
and N-Queens. For each case-study, synchronous and asynchronous 12- and 24-
island PIMs were implemented using static topologies: net, torus, tree, ring, and
complete graph, and three dynamic topologies based on the diversity and genotype
of the native individuals. To obtain good quality results and solid feedback regard-
ing the adequacy of each different PIM, parameters were properly and separately
calibrated for each model.

From the experiments, it is observed that each PIM requires specific breed-
ing cycle and migration parameters to achieve satisfactory accuracy having an
impact in its run-time; in particular, the setup of migration parameters resulted
in very different values. But for all PIMs the adequate parameter setup provided
satisfactory speed-ups and always better accuracy than the one provided by the
sequential GA, which implies that the way in which both the breeding cycle and
the migration process are integrated is crucial to successfully adapt each PIM to
each case-study.

The best accuracies for TMP were achieved by synchronous dynamic 24-island
PIM, while the best accuracies for URD and UTD by synchronous static and
dynamic 12-island PIMs, on the opposite side we have N -Queens where the best
results were provided by an asynchronous dynamic 12-island model. For URD,
UTD and N -Queens, the speed-up of the majority of asynchronous PIMs were
better than those of their synchronous versions. The contrary happens for TMP.
However, for URD and TMP the best speed-ups were provided by synchronous
PIMs. For URD and UTD, the majority of 24-island PIMs provided better speed-
ups than their 12-island versions. For TMP, the best speed-ups were provided by
24-island PIMs, but in several cases, 12-island PIMs presented better speed-ups
than their 24-island versions, while for N -Queens the best speed-up was provided
by a 12-island PIM and the majority of 12-island PIMs gave better speed-ups than
their 24-island versions.

Current work explores heterogeneous PIMs, in which islands may run different
algorithms. There is a variety of EAs that can apply in such heterogeneous PIMs,
such as particle swarm optimization [20], artificial bee colony [39], shuffled frog
leaping [22], elephant herding behaviour [63], social spider algorithm [37], among
others. Such research will require the initial development of sequential versions for
these EAs specialized for each different case-study and the subsequent develop-
ment of heterogeneous PIMs for which migration policies, as well as speed-up and
accuracy, need to be investigated. Besides, of course, comparing heterogeneous and
homogeneous PIMs.
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54. da Silveira, L.A., Soncco-Álvarez, J.L., de Lima, T.A., Ayala-Rincón, M.: 2020 IEEE
Congress on Evolutionary Computation (CEC). In: 2020 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8. IEEE (2020). DOI 10.1109/CEC48606.2020.9185732

55. Skolicki, Z., De Jong, K.: The influence of migration sizes and intervals on island mod-
els. In: Proc. of the 7th Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO), pp. 1295–1302. ACM (2005). DOI 10.1145/1068009.1068219. URL
http://doi.acm.org/10.1145/1068009.1068219
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